

DIRETORIA

Presidente: Raimundo A.E. Mesquita - Tel.: (021)233-2314

Vice-Presidente: Yvan Lassance de Oliveira - Tel.: (021) 542-3770

Diretor da Área Técnica: Alex Sauer - Tel: (021) 225-4164

Diretor da Área de Relações Comunitárias: Hans Frank - Tel.: (021) 709-4194

Diretor da Área Administrativo Financeira: Benedito Fabiano O. Aguiar - Tel.: (021) 712-1663.

Presidentes Anteriores: Edward G. Kilpatric, 1986/87. Álvaro Pessôa, 1987/90 e Raimundo Mesquita, 1990/92

DEPARTAMENTOS

Exposições e julgamentos: Ivana Zubic

Difusão Cultural: Carlos A. Gouveia: Tel.: (021) 230-7348

Pesquisa, Cultivo e Cursos: Maria da Penha Fagnani - Tel.: (021) 246-9868

Biblioteca: Maria Stella Borges

Secretariado: Helena Eyer : Tel.: (021) 233-2314 Tesouraria e Finanças: Cypriano Lopes Feijó Patrimônio: Mário Abreu de Almeida.

CONSELHO DELIBERATIVO

Presidente: Waldemar Scheliga - Tel.: (021) 267-8384

Membros: Felisdoro Bastos Nunes, Álvaro Pessôa, Carlos Eduardo de Britto Pereira e Roberto Agnes

REVISTA OROUIDÁRIO

Diretor Responsável: Alex Sauer

Editoria: Roberto Agnes - Tel.: (021) 247-8362

Comissão Editorial: Waldemar Scheliga, Carlos A. Gouveia, Raimundo Mesquita, Alex Sauer e Álvaro Pessôa

A revista circula trimestralmente, com publicação nos meses de Março, Junho, Setembro e Dezembro e é distribuída gratuitamente aos associados.

Roga-se permuta com publicações afins

Artigos e contribuicões devem ser dirigidos ao editor, datilografados em espaço duplo, em uma só face, em papel oficio Tipo A-4. Aceitos, serão publicados em um dos números seguintes. Os rejeitados serão devolvidos ao autor, desde que tenha fornecido o endereço. Fotografias, em preto e branco, devem vir acompanhadas de negativos, e nome do fotógrafo, devendo ser identificada a autoria de desenhos e esquemas, apresentada, sempre, em papel branco e tinta preta. Para fotos a cores os autores deverão remeter, em slide, diapositivo ou o próprio fotolito a ser publicado, com identificação do motivo da foto e nome do fotógrafo. Para remessa de fotolitos contatar, antes, com o editor para a juste de dimensões.

Propaganda e matéria paga, com indicação do mês de publicação, deverão ser entregues à Redação com 2 meses de antecedência.

O título da revista é de propriedade da OrquidaRio, nome que, também está registrado no INPI.

Qualquer matéria ou fotografia publicada, quando não sujeita à reserva de Direito Autoral, indicada como DR pode ser reproduzida desde que se indique a origem.

Preços:

Sendo a nossa revista trimestral e em razão dos elevados níveis inflacionários , não há como divulgar, a cada 3 meses, os preços das contribuições dos sócios Fundadores, Contribuintes, Correspondentes e Vitalícios, bem como aqueles de Publicidade, sem que eles fiquem imediatamente aviltados. Pareceu-nos melhor, portanto, prestar estas informações, solicitando que os interessados escrevam ou telefonem para a Secretaria para saber das Tarifas vigentes ao instante dos seus pagamentos.

Overseas subscriptions rates:

a) 1 year: Us\$25.00; b) 2 years Us\$48.00; 3 years: Us\$68.00 Obs.: By Air Mail, add Us\$8.00, per year

A correspondência à Revista deverá ser enviada ao Editor. Av. Pres. Vargas, nº 583 - grupo 2.014, Centro, RJ, CEP 20.071. Tel.: (021) 224-2886 - Fax (021) 507-1993.

Orquidário

Volume 7, nº 3

ISNN 0103-6750

julho a setembro de 1993

Índice

<u>Textos</u>	Página
AGNES, Roberto - Novidades no Horizonte.	81
CARVALHO E SILVA, Francisco e Sérgio Potsch	
- Adubação Foliar.	88
BRITTO PEREIRA, Carlos E. de - Oncidium crispum	96
PAIVA CASTRO, Vitorino - Estudo sistemático de Pabstia	98
Seções	
Orquídeas do Brasil -I - Mato grosso do Sul	104
Perfis - Álvaro Pessoa	
Sementeira dos Sócios	108
Variedades	108
Ilustrações	

Fotos e desenhos: Capa, prancha de A. Goossens, retirada do Dictionnaire Iconographique des Orchidées, de Cogniaux, id.ibid.a prancha que consta da página 97. Roberto Agnes, pag. 85, 86, fotos do Museu de Arte Moderna e 4ª capa; Milton Carpenter, pag. 96; Paulo Barbosa, 96; Vitorino Paiva Castro Neto 188/103: Manabu Matida, 105; Américo Piquet Carneiro, 106.

Livro	Tombo	n.º	R 27		

Obra n.º ..

Nossas Capas

Bibliotecario

Orquidário quer revitalizar o desenho botânico no Brasil, que, por ser botânico, não precisa deixar de ser, também, artístico. Exemplo disso é a bela prancha da capa, aquarela de A. Goosens, cuja foto nos foi, gentilmente, cedida por Carlos Eduardo de Britto Pereira, no contexto do seu artigo sobre a ilustração, clássica, de orquídeas. Exemplo disso, também foram pranchas que publicamos, no nº 1, deste ano, do acervo da Biblioteca Nacional, e outras que vamos publicar do acervo do Jardim Botânico do Rio de Janeiro e da Fundação Margareth Mee. O *Cymbidium* Second Rennaisance 'Genny Wren', que se vê na 4º Capa ilustra uma das afirmações de Roberto Agnes, no seu artigo, sobre o trabalho recente de hibridação com esta planta.

Novidades no Horizonte

Roberto Agnes*

Novidades sempre despertam interesse do colecionador levando-o invariavelmente à renovação de sua coleção. As grandes coleções de orquídeas sempre se distinguiram por plantas novas que, de alguma maneira, acabaram influenciando os demais cultivadores. No início do século nomes famosos como Charlesworth, Holford e Colman, entre outros, dominaram o mundo orquidófilo. Da sua persistência surgiram híbridos que serviriam de base para a maioria das plantas por nós cultivadas hoje em dia. Naquela época, poucas eram as grandes coleções, os métodos de reprodução eram rudimentares e as plantas ainda muito caras.

O desenvolvimento do semeio em frasco criou um verdadeiro boom no mundo orquidófilo colocando, nas mãos dos cultivadores, grandes quantidades de plantas e a preços acessíveis. Aumentou significativamente o número de híbridos registrados e eles se tomaram cada vez mais complexos. Nas décadas 40 a 70 presenciou-se uma verdadeira corrida de registros. Novidades apareciam a toda hora e quando se achava impossível superar uma determinada planta, surgia logo em seguida, algo melhor. Novidades eram a ordem do dia e muitos híbridadores fizeram o nome com plantas que ainda permanecem nas nossas coleções. Slc. Hazel Boyd é conhecida por quase todos no Brasil. No exterior, plantas como Ascda. Yip Sum Wah, C. Bob Betts, Cym. Lillian Stewart e Solana Beach, Paph. Vanda M. Pearman, Phal. Lipperose e Vanda Rothschildiana figuravam entre as plantas mais famosas e premiadas.

Os anos 80 trouxeram novidades, mas de forma peculiar. Um renovado interesse pelas espécies resultou no seu aprimoramento e o surgimento de novas linhas de híbridos primários. A descoberta de novas espécies, os *Paphiopedilum armeniacum*, malipoense e micranthum, por ex., possibilitou a criação de toda uma linha de híbridos com forma e cor nunca antes vistos. Todavia, nesta busca do novo, o que vem a ser mais

interessante, para mim, é o resgate de alguns híbridos primários antigos e quase esquecidos. Atualmente existe um grande interesse por quase todo tipo de cruzamento, desde as *Cattleya* do tamanho de um prato, até micro-orquídeas como os *Pleurothallis*.

Sem sombra de dúvida o gênero mais hibridado, nos últimos anos, é o *Phalaenopsis*. Somente no mês de setembro de 1992, foram registrados mais de 120 híbridos. Teoricamente os híbridos brancos e corde rosa quase se aproximaram da perfeição abrindo-se com isso espaço para o desenvolvimanto dos chamados novelty hybrids (híbridos novidade) e os multiflora. O caminho para os híbridos novidade teve início com os amarelos. Tudo começou com *Phal*. Golden Sands 'Canary' FCC/AOS, que representava um imenso avanço em termos de cor e forma. *Phal*. Barbara Moler 'Gertie' e alguns clones de *Phal*. Golden Buddha também obtiveram excelentes resultados porém um híbrido, já registrado em 1927, vinha a ser a grande surpresa. *Phal*. Deventeriana 'Treva' foi usado para produzir flores de melhor forma e textura.

Apesar do sucesso destes híbridos faltava às flores, tamanho e firmeza de cor. Na medida em que as flores aumentavam de tamanho, a cor esmaecia. Este obstáculo ficou aparentemente superado quando o *Phal*. Golden Emperor'Sweet recebeu seu FCC/AOS. As flores mediam 10.5cm de diâmetro e eram cor amarelo canário. A cor não esmaecera e a haste carregava 10 flores e 4 botões. Podia-se "finalmente " sonhar com amarelos do tamanho de *Phalaenopsis* brancos, de boa cor e forma. Após muito esforço começaram a surgir *Phalaenopsis* amarelos com até 12cm de largura. A cor continuava forte e as flores mantinham a boa forma. Híbridos que apresentam grandes possibilidades como futuros alicerces incluem *Phal*. Hausermann's Goldcup, *Phal*. Wappaoola e *Phal*. King's Ransom.

Outras cores que fascinam os hibridadores de *Phalaenopsis* são os chamados sunset tones, (tons do por do sol) e

vermelho. Imaginem uma haste carregando 15 flores de 10cm cada, em tons de laranja ou melhor ainda, da cor de *Sophronitis coccinea*. Pode parecer ficção mas nos proximos anos isto pode vir a ser realidade. Plantas de *Phal*. Cadiz Rock produzem até 25 flores em tons de coral e *Phal*. Pago Pago vem sendo premiado pelas suas flores em tons de coral alaranjado.

A cor vermelha foi conseguida através da espécie Phal. violacea. Hibridos como Phal. Malibu Imp apresentavam o vermelho tão desejado, faltavam todavia, mais uma vez, tamanho e forma. A introdução de Phal. Golden Buddha começou a corrigir estes defeitos. Os primeiros clones de Phal. Golden Buddha eram amarelos, cobertos de barras vermelhas. Após algum tempo notou-se que autofecundações e cruzamentos entre dois clones diferentes resultava em flores mais intensamente cobertas de vermelho. Em alguns casos este pigmento chegou a cobrir toda a flor. Estes clones foram ,então, usados na criação de híbridos vermelhos. Além da cor intensa apresentavam tamanho maior e forma mais arredondada e o mais importante, o vermelho ficava livre do reflexo arroxeado que é oriundo do Phal. violacea. Alguns híbridos dignos de destaque são, Phal. Cordova com flores vermelho escuro e de substância espetacular, Phal. Desert Dreams cuja corémais alaranjada edetamanho grande e Phal. Mahalo com flores arredondadas em vermelho brilhante. Há uma grande expectativa em relação a estes híbridos pois através deles chegar-

Phal. Welcome Line 'Soroa'

se-á, certamente, ao *Phalaenopsis* que carregará uma duzia de flores de *Sophronitis* numa só haste.

Outro grande esforço dos hibridadores é com os *Phalaenopsis* de porte pequeno e haste multifloral. A maior parte de todos estes hibridos teve seu início com *Phal. equestris* e hoje em dia é possivel encontrar versões miniaturas quase perfeitas dos *Phalaenopsis* brancos, rosa e estriados. O *Phal.* Cassandra foi o primeiro hibrido a despertar interesse na possível miniaturização dos grandes hibridos e, através dela chegamos a um dos grandes cruzamentos da atualidade, *Phal.* Carmela's Pixie. Muitos clones já foram premiados e dezenas de seus hibridos estão prestes a florescer. A vantagem destas plantas miniaturas é que elas são de manuseio mais fácil e as hastes ramificadas carregam até 30 flores. Hibridos como *Phal.* Be Glad produzem delicadas flores brancas com centro rosado e de forma perfeita.

O gênero Paphiopedilum segue, logo atrás, em número de híbridos registrados. Deve-se isso ao renovado interesse pelos híbridos primários e à introdução das novas espécies acima mencionadas.

O Paphiopedihum Maudiae é conhecido por qualquer cultivador deste gênero. Este híbrido primario, registrado em 1900, já foi refeito dezenas de vezes, todavia a introdução de um clone particularmente escuro resultaria numa verdadeira explosão de cruzamentos nos anos 80. Paph. callosum 'Sparkling Burgundy' produziu flores cor de vinho tinto. Quando cruzado com um clone escuro de Paph. lawrencianum, as plantas deste recruzamento de Paph. Maudiae causaram um grande impacto no mundo orquidófilo. Os donos da firma Paphanatics notaram que um lote de plantas de Paph. Maudiae, colocado à venda pela Stewarts, apresentavam folhas estranhamente escuras. Na esperança de achar algo novo adquiriram algumas. A primeira a florir, Paph. Maudiae 'Ebony Queen' FCC/AOS, começou a erados Paphiopedilum' vinicolor'. Desde então, criaram-se dezenas destes híbridos, algumas flores são tão escuras que se aproximam do preto. Como resultado dos hibridos vinicolor voltou-se a recruzar os Paphiopedilums tipo Maudiae com resultados excelentes. As flores são cada vez maiores e as marcações cada vez mais bonitas. A introdução de outras espécies da seção Barbata manteve a forma característica e aumentou a variação das marcações. Exemplo disso pode ser encontrado nos híbridos como Paph. Nightwing, Paph. Red Pepper e Paph. Raissinette.

A introdução de uma nova espécie, principalmente quando ela tem valor horticultural, cria muito interesse junto aos hibridadores. A abertura da China aos cultivadores de orquideas

Cultivo, Soroa Orchids - Foto, Roberto Agnes

facilitou o acesso a regiões nunca antes exploradas resultando na descoberta de algumas das espécies mais bonitas já vistas. Imagi-

nem o frisson causado pela primeira floração de Paph. armeniacum com suas flores de cor amarelo canário ou o choque de ver um Paphiopedilum cor de rosa com estrias púrpurasnas pétalas, a cor dePaph.mi-

Bc. Roman Holiday.

Foto e cultivo: Roberto Agnes

cranthum que foi descoberto um ano depois. Como se não bastas-se o Paph. malipoense produz flores verdes que são perfumadas e o Paph. emmersonii, grandes flores brancas de boa forma. As possibilidades se tomaram quase ilimitadas. O artigo do Olaf Gruss no Vol.6, no.4, de Orquidário, descreve alguns dos novos híbridos que apareceram recentemente. Para o deleite dos apreciadores de Paphiopedilum comprovou-sequeo perfume do Paph. malipoense aparece em seus híbridos, assim será possivel criar uma leva de Paphiopedilums fragrantes. Certamente os melhores híbridos a surgir destas espécies são Paph. Magic Lantern e Paph. Kevin Porter. Já estamos na segunda geração de híbridos prestes e florir e provavelmente os proximos anos nos trarão surpresas tão grandes quanto a descoberta dessas especies.

Uma espécie de florum poucomenor mas de impacto visual tão forte quanto as espécies acima mencionadas é o *Phragmipedium besseae*. Da mesma forma que o sonho de um *Phalaenopsis* vermelho parecia ser algo inatingível, já que os chamados *Paphiopedium* vermelhos puxam mais para a cor de vinho, a descoberta de *Phrag. besseae* em 1981 possibilitou a criação de híbridos vermelho sangue. Esta espécie endêmica do Equador e do Peru produz flores vermelho escarlate e quando cruzada com espécies ou híbridos de *Phragmipedium*, sua cor tende ser dominante. Na recente exposição mundial em Glasgow, o híbrido *Phrag.* Eric Young causou grande impacto pelas suas

flores vermelhas e boa forma. Alguns clones excepcionais são tetraploides e são muito promissoras como matrizes.

Naturalmente o gênero Cattleva não poderia ser esquecido. O Brasil já produz sua quota de excelentes hibridos complexos. As nossas semi-albas figu-

ram entre as melhores do mundo, clones de Blc. Captain Pessoa, híbrido feito pela Florália, não poderiam ser mais perfeitos. Rolf Altenburg se distinguiu na produção dehíbridos azuis e foi pioneiro na criação de híbridos aquinados.

O que chama atenção é o uso de espécies (aprimoradas) na criação de hibridos intergenêricos. Com o intuito de criar algo novo, chegamos a gerar intergenêricos com cinco gêneros diferentes. O desejo de criar plantas menores resultou no uso intensívo das espécies de Sophronitis e das nossas Laelias rupícolas. Slc. Hazel Boyd traz nasua bagagem algumas doses de Soph coccinea. Quase todos os hibridos registrados com o prefixo Seagull's têm, como matriz, uma das espécies acima. Todas elas são de porte pequeno e produzem flores altamente coloridas.

Uma outra novidade são os hibridos feitos com Brassavolanodosa. Esta espécie da América Central produz flores brancas perfumadas, em plantas compactas. Nos cruzamentos ela é dominante para forma mas a cor branca some e a cor da outra matriz é intensificada. Como bonus estes hibridos tendem a florir mais que uma vez por ano e são perfumadas. Bc. Roman Holiday é um exemplo perfeito deste tipo de cruzamento. Naturalmente quando mais um gênero é introduzido no hibrido a gama de cores aumenta e é possivel obter flores com pétalas e sépalas verdes com pintas roxas e labelo rosa escuro. Os hibridos de Bc. Binosa são extremanente coloridos como por ex. Bc. Caguas Landosa e Blc. Siam Spots.

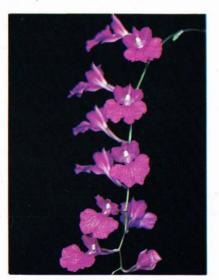
luyls. Hiroko

Os Cymbidiums sempre foram populares por causa da facilidade com que florescem. A falta de variedade da forma de suas flores diminuiu o interesse por eles durante muitos anos, as pessoas se contentavam em cultivar as mesmas plantas. O desenvolvimento de hibridos 'pure color' (cor pura, - sem pigmento vermelho) resultou em flores de cor brilhante que não mancham quando fertilizadas. Cym. Sleeping Dream criou sensação pela sua cor absolutamente pura: desde então hibridos como Cym. Vivacious e Cym. Second Rennaissance marcam forte presença nas exposições.

Cym. Solana Beach e Cym. Angelica provocaram um aumento dramatico no tamanho da flor de Cymbidium. Alguns clones chegam a produzir 18 flores, de até 14cm de largura, numa só haste. Cym. Featherhill Fanfare e Cym. Prince of Caithness são exemplos desses verdadeiros monstros.

Em termos de leveza, poucas plantas aproximam-se dos intergenêricos feitos com *Odontoglossum*, *Oncidium*, *Rodriguezia* e afins. Os intergenêricos de *Odontoglossum* figuram entre os mais coloridos, *Oda*. Joe's Drum e *Oda*. Robert Dugger são perfeitos exemplos disso. A reintrodução de espécies ou hibridos antigos, com flores menores, mas, muitas, em hastes altas e ramificadas, criou uma série de cruzamentos extremamente

Cultivo e foto: Milton Carpenter


floriferos. As hastes parecem-se com pequenas árvores de natal multicoloridas e, em alguns casos, chegam a produzir 90 flores numa só floração. As flores são um pouco menores, mas, em compensação, ganharam uma leveza que lhes faltava. Cruzamentos feitos com *Oda*. Heatonensis, *Odm. pescatorei* e *Odm. bictoniense* começam a chamar cada vez mais atenção.

As Miltonias, com suas flores em forma de amor

perfeito, merecem destaque também. Inflorescências com 5 flores, de até 12cm de comprimento, chamavam a atenção na Exposição Mundial, de Glasgow e Milt. Robert Strauss, Milt. Jeanete Brasher e Milt. Jersey figuram naquele grupo seleto que deverá dominar o gênero por muito tempo ainda.

Porúltimo, deixei um pequeno grupo que figura entre as minhas orquídeas prediletas. Os híbridos de *Rodriguezia* e *Comparettia, Rodrettia*, e de *Rodriguezia* e *Oncidium, Rodricidium*, destacam-se pela combinação de sua forma delicada e cores vibrantes. A *Rodrettia* Dark Beauty demonstra a beleza destes híbridos que começam a ganhar espaço nas coleções pelo mundo afora. Recentemente *Rodrettia* Ron Ciecinski começou a aparecer no mercado. Os melhores clones trazem flores cor de abobora com pintas vermelhas, o labelo é laranja escuro com as bordas vermelhas.

Este artigo não poderia pretender ser uma apresentação exaustiva de todas as novidades. Tantos são os híbridos realizados a cada mês que toma-se impossível saber de tudo que aparece. As plantas que acabei de descrever chamaram minha atenção em exposições recentes, mas tenho certeza que, daqui a pouco, poderiamos escrever um outro artigo descrevendo novos híbridos, bem diferentes.

Rodrettia Dark Beauty Cultivo e foto: Milton Carpenter

^{*} Alberto de Campos 107/302 - Ipanema 22.430-190 - Rio de Janeiro - RJ.

ADUBAÇÃO FOLIAR, CONQUISTA DA QUÍMICA AGRÍCOLA. SUAS VANTAGENS E DIFICULDADES.

Francisco de Sales Carvalho e Silva*
Fernando Potsch de Carvalho e Silva*

RESUMO

Os autores fazem uma revisão histórica dos processos e conceitos da adubação das orquídeas, dando ênfase à adubação foliar. Resumem as técnicas, as fórmulas, e o papel dos elementos químicos. Discutem as vantagens eos inconvenientes da adubação confrontando a adubação orgânica com a química.

ABSTRACT

The authors make a historical review of the processes and concepts of orchid fertilizing emphazising foliar fertilizing. They summarize the techniques, formulas, and the roles of chemical elements. The advantages and disadvantages of fertilizing are discussed and the organic and chemical fertilizings are confronted.

É FATO PACÍFICO QUE AS ORQUÍDEAS, DE UM MODO GERAL, SE beneficiam com a aplicação periódica de soluções nutritivas, principalmente nos periodos de maior atividade vegetativa, desde que recebam luminosidade suficiente e tenham um teor de umidade e calor adequados.

Os extensos trabalhos de Dr. H.O. Eversole (The Bolders, Canadá, Cal.), relatados no livro de E.A. White, mostram que as orquideas são fortemente estimuladas por aplicações semanais de produtos químicos.

O Dr. Eversole, ao questionar que adubo usar, emite o importante conceito de que qualquer solução nutriente de boa qualidade, com fórmula equilibrada, dá bons resultados desde que usado com regularidade.

O aspeto exuberante e a coloração verde-claro/verde-vida das plantas dificilmente são conseguidos por outro tipo de adubação que não a foliar regularmente aplicada. Isto se explica pelo fato de fomecermos às

mesmas fórmulas balanceadas, contendo os elementos necessários aos vegetais, não esquecendo micro elementos e reguladores de crescimento que favorecem sua brotação e enraizamento, sendo, pois, de imediato aproveitamento, não alterando o pH do substrato.

Partindo do estudo químico das cinzas das orquideas, estabeleceuse que uma série de elementos químicos são indispensáveis à vida dessas plantas, sendo absorvidos quer pelas raízes, quer através dos estômatos foliares.

Todos esses elementos assim absorvidos, servem para completar sua estruturaquímica, essencialmente realizada pela fotossíntese que, às custas do CO₂, da umidade do are da energia solar, elabora o amido, substância básica da vida vegetal.

O carbono representa metade do peso seco dos vegetais, os outros elementos químicos entram somente para complementar a estrutura celular das plantas; isso nos diz da importância de não exagerarmos no fornecimento de elementos químicos às mesmas.

É bom recordar que as orquideas têm 90% de água, daí só necessitarem de pequenas quantidades de substâncias químicas.

Essas exigências são aumentadas pela presença dos microrganismos, especialmente os fungos, que compõem a indispensável flora microbiana, que vive no substrato e se incumbe da decomposição da matéria orgânica. A necessidade de alimento aumenta na fase de crescimento ativo das plantas, na floração e frutificação.

Já os adubos orgânicos, como, por exemplo, o farelo de mamona ou os estercos de galinha e de outros animais, que têm os nutrientes em forma orgânica complexa e que precisam ser reduzidos a compostos simples inorgânicos, pelos microrganismos, têm, ao lado do seu incontestável valor, o inconveniente de entupirem os poros do substrato, aumentando sua umidade e diminuindo a indispensável aeração das raízes, fonte de captação de energia usada na absorção dos alimentos, o que pode acarretar sua morte. Basta abrir o substrato de uma planta diversas vezes adubada, por exemplo, commamona,

para se ver a quantidade de resíduo armazenado.

Simultarieamente, temosalterações dopHpelaprópria alcalinidade do adubo (geralmente de pH acima de 8) e por sua decomposição pela ação dos germes da putrefação. Para ser dissolvido, o adubo deve sofrer ação dos germes que o desintegram até a fase de produtos simples, capazes de serem absorvidos pelas raízes. Esse desdobramento é sempre fortemente alcalino, desprendendo cheiro desagradável e favorecendo a proliferação de microrganismos.

Essa alcalinidade e essa proliferação de microrganismos não é o ideal para as plantas.

Basta lembrar o velho conceito que dizser o substrato novo, no caso xaxim, o melhor dos adubos. Um substrato novo de xaxim além de sua porosidade, tem pH na faixa de 3,5 a 4.

Nos lugares frios, consegue-se neutralizar esses inconvenientes que são desastrosos nos climas quentes.

Essa desintegração do adubo é acompanhada da decomposição do substratoque tem sua vidamuito encurtada. Sabendo-se do preço alto do xaxim edadificuldade que representa sua troca, isto passa a ser um novo inconveniente.

O esteroo de galinha, a pesar dos inconvenientes de obstrução do substrato, de alcalinidade e de proliferação microbiana, apresenta uma vantagem sobre os outros adubos orgânicos. A presença do ácido úrico, produto do desdobramento dos protídeos que é eliminado juntamente com a urina (manchas brancas nas fezes). Esse ácido pertence ao grupo das purinas e como as demais tem uma ação estimulante sobre as plantas.

Os componentes de um adubo pela quantidade que são consumidas pelas plantas podem ser classificados em quatro grupos:

- Macro Elementos Primários
- Macro Elementos Secundários
- Microelementos
- Hormônios ou Reguladores de Crescimento.

Lembramos que os elementos químicos podem entrar nos adubos em variadas fórmulas químicas. Geralmente para a escolha levamos em consideração a facilidade da absorção pelas plantas, a menor toxidez, e, também, a compatibilidade com os demais elementos da fórmula, sem o que haveria formação de compostos de menor solubilidade que precipitariam, prejudicando o resultado.

Como exemplo de incompatibilidade temos a mistura de nitrato de cálcio Ca(NO₃)₂ esulfato de amônio (NH₄)₂SO₄ - que ocasionaria a imediata precipitação de sulfeto de cálcio (CaSo₄) pouco solúvel.

Evidentemente essa precipitação é mais intensa nas soluções

concentradas

O QUE É ADUBAÇÃO? PORQUE ADUBAR?

Adubo ou fertilizante é qualquer material que possa ser aproveitado pelas plantas como alimento.

Assim como os animais, as plantas necessitam de alimento, que buscam no substrato onde vivem. Esses alimentos em última análise são os sais solúveis como: Nitrogênio, Fósforo, Potássio, Cálcio, etc., oriundos geralmente da desintegração de matéria orgânica ou da adubação química.

As plantas usam pequenas quantidades desses elementos minerais que juntamente como gáscarbônico do ar, aágua e um grupo de oligo elementos como cobre, zinco, manganês, ferro etc., são usados na confecção de sua estrutura. A alta concentração de sais, seja da decomposição do substrato, da adubação ou das regas com águas impróprias torna-se altamente perniciosa. Na natureza as plantas retiram essas substâncias do solo, e no caso específico das orquídeas epífitas, dos detritos vários que chegam as raízes e folhas e são solubilizados pelas chuvas ou neblinas.

Por isso ficam sujeitas a irregularidades na obtenção dos elementos minerais necessários.

Nas culturas artificiaisem que as plantas são altamente exigidas para a regularidade do seu desenvolvimento, e a constância de sua floração, temos que suprir suas possíveis deficiências, fornecendo-lhesos elementos químicos carentes em forma de adubação.

FORMAS DE ADUBAÇÃO

Primitivamente o único adubo usado era o orgânico, na forma de estercode animais, restos de vegetais, lixos diversos, etc. Mais modernamente, o homem começou a usar os adubos químicos, colocados no solo, e que se constituem em uma mistura de sais, com fórmulas balanceadas e que suprem as plantas de suas necessidades.

No caso das orquídeas o uso do adubo orgânico tem a séria desvantagem de obstruir os espaços do substrato dificultando a ventilação e oxigenação das raízes dessas plantas. Tambémos adubos químicos colocados no substrato geralmente não são muito eficientes, por serem facilmente laváveis pela água das regas, e por vezes agressivos para as raízes nas altas concentrações que podem ser usados.

O QUE É ADUBAÇÃO FOLIAR?

Como uma conquista mais moderna, surgiu a adubação foliar, que

se resume num simples pulverizar de uma solução balanceada de nutrientes, nas folhas das plantas, que, pela absorção passiva e ativa passam a utilizar os nutrientes. Ela se constitui numa prática de grande importância na agricultura.

A absorção de nutrientes pelas folhas foi primeiro observada por Griss, em 1884, Mayer, em 1874, etc. Essa capacidade das folhas foi aproveitada, pela primeira vez, por Johnson, em 1916/1924, que corrigia deficiência de ferro com aplicação de solução de sulfato ferroso em culturas de abacaxi, no Havaí.

Desde então, o uso das aspersões foliares de nutrientes se difundiu como processo corretivo das deficiências minerais e como adubação foliar, como seusa hojerotineiramente no caso das orquideas, deplantas omamentais e outras culturas nobres, como café, morango, laranja, etc.

O emprego de radioisótopos, que permite medidas exatas da absorção e do transporte interno dos nutrientes, tomou o novo processo extremamente útil, eficiente e inquestionável.

Sabendo-se que as folhas absorvembem erapidamente assoluções nutritivas que lhes são aplicadas, usa-se essa técnica para fomecer micronutrientes cujas necessidades totais das culturas podem frequentemente ser satisfeitos com uma única aplicação foliar.

No caso dos macronutrientes, de consumo maior, somente parte das necessidades das plantas são satisfeitas, e a adubação foliar tem caráter complementar.

Apesar das grandes vantagens que a adubação foliar apresenta, não pode substituirtotalmente aradicular, salvono casoda floricultura especialmente das orquídeas; isso ficaria com custo elevado e seria dificil suprir as grandes culturas, em poucas aplicações, de grandes quantidades de nutrientes.

A adubação foliar no caso especial das plantas omamentais e especialmente das orquídeas , fornece as plantas todos os elementos necessários:

 Os macronutrientes primários; os macronutrientes secundários, os micronutrientes. Também pode fornecer às plantas, reguladores de crescimento -hormônios- capazes de apressar ou provocar o enraizamento e a brotação; fungicidas e inseticidas sistêmicos; antibióticos; herbicidas etc.

Na maioria das vezes os elementos pulverizados nas folhas são rapidamente absorvidas e transportados para todas as partes do vegetal, o que faz com que a adubação foliar adquira maior importância.

MECANISMOS DE ABSORÇÃO

Os estômatos são responsáveis pela maior parte da absorção dos nutrientes, masa própria cutícula que recobre as folhas, quando hidratada, permite a passagem dos nutrientes; ela é permeável à água e às soluções de

actubo.

Essa capacidade da cutícula de absorver água e as substâncias nela dissolvidas iá era conhecida de GARREAU nos idos de 1849.

Existem dezenas de trabalhos experimentais comprovando a absorção da água pela epiderme foliar. Folhas murchas mergulhadas na água ou molhadas pela chuva readquirem sua turgescência.

A água em alguns casos é absorvida pelas escamas como no caso das bromélias.

Hiltner (1912 e 1924), conseguiu o desenvolvimento de certas plantas, nutridas com solução de sais minerais, exclusivamente, através da superficie foliar.

Desde então, o uso das aspersões foliares de nutrientes se difundiu como processo corretivo das deficiências minerais e como adubação foliar, como se usa hoje rotineiramente no caso de muitas culturas.

Para que a solução penetre na intimidade das folhas, seja pelos estómatos ou pela cutícula, é necessário primeiro que ela molhe a superficie onde é aplicada. A capacidade de molhar uma superficie sólida, depende do maior contato entre as superficies, o que é função da tensão superficial do líquido.

Para melhorar essas condições, costuma-se juntar às soluções nutritivas, substâncias denominadas agentes umectantes ou molhantes ou surfatantes ou ainda espalhantes - adesivas, que pela sua ação adesiva, impedemque asolução escorraporação da gravidade, porsuaação umectante dificultam a evaporação da água, mantendo os nutrientes mais tempo em estado iônico em contato com asuperfície foliare, quantomaistempo asolução ficar em contato com a folha, maior será a absorção. Esses agentes são detergentes, que, adicionados em quantidades muito pequenas às soluções, diminuem a tensão superficial. Os modemos agentes molhantes, também induzemum aumento da adesão moléculas água-cutícula, permitindo melhor contato entre a solução nutriente e a superficie da folha.

Os agentes molhantes permitem também que as soluções vençam a barreira representada pelo ar que em condições normais enche os estômatos.

FASES DA ABSORÇÃO

Ela se faz em dois estágios:

- -O primeiro, bastante rápido, representa a entrada dasolução desde a superfície cuticular cerosa até a intimidade citoplasmática. É a fase não metabólica
- Num segundo tempo, que pode demorar horas é levada à intimidade dos tecidos, constituindo a fase metabólica da absorção.

PAPEL DOS ELEMENTOS QUÍMICOS.

Liebeg iniciadorda química agrícola, porvolta de 1840, estabeleceu a necessidade de suprir as plantas de elementos minerais.

Essa idéia básica foi se aprimorando com o correr dos anos até o estabelecimento de conhecimentos mais exatos.

Sabe-se hoje que as plantas necessitam basicamente de três grupos de elementos minerais, já citados.

No primeiro, temos os macronutrientes primários que são consumidos em quantidades altas pelas plantas; eles são: o Nitrogênio, o Fósforo e o Potássio.

No segundo grupo temos os macronutrientes secundários de demanda bem menor: o Cálcio, Magnésio, Enxofre e Ferro.

Noterceirogrupotemosos micronutrientes, cuja relação cadadia aumenta, e que, apesar de serem usados em quantidades mínimas, são indispensáveis aos vegetais.

Entre eles temos: Boro, Cloro, Cobre, Zinco, Manganês, Molibdênio, Cobalto, Iodo, etc. Alguns desses microelementos para que sejam eficientes têm que entrar na mistura de adubos estabilizados quimicamente em forma de quelatos.

Não podemostambém esquecer os regu-ladores de crescimento; assunto ainda controvertido, mas de indiscutível utilidade aos vegetais. Geralmente são usados nos adubos a vitamina B1 e a amina do ácido nicotínico.

PAPEL DOS ELEMENTOS MINERAIS

NITROGÊNIO (N)

O nitrogênio é o macro elemento iônico que mais interesse tem na adubação foliar. Representa de 2 a 6% de matéria seca das plantas.

Onitrogênio éconsiderado alimento de massa, isto é, o elemento químico que as plantas geralmente necessitam em maior quantidade principalmente na fase ativa de crescimento; é um estimulante e fonte de vigor.

Uma dose correta de nitrogênio aumenta o crescimento com a produção de muitas folhas grossas que apresentam cor verde escura, pela abundância de clorofila. Essa boa vegetação aumenta a atividade

assimiladora. O nitrogênio que pode ser considerado uma das bases químicas da vida faz parte integrante das proteínas, dos seus amino-ácidos e albuninó ides, da clorofila, das enzimas, sendo também responsável pela formação das defesas vegetais contra as pragas e pela formação dos anticorpos, assunto ainda bastante controverso.

Em certas circunstâncias, quantidades excessivas de nitrogênio podem prolongar o período de crescimento produzindo uma vegetação luxuriante, retardando amaturidade, tomando ostecidos moles, semresistências às pragas e doenças, especialmente quando o suprimento dos demais elementos não é adequado.

A sua falta produz vegetação fraca, órgãos vegetativos reduzidos, folhas de coloração verde amarelada, etc.

O nitrogênio pode ser absorvido na forma nítrica (NO₃), amoniacal (NH₄) e orgânica. Como exemplo: o nitrato de cálcio, o sulfato de amónio e a uréia. A ação do nitrogênio é fundamental à vida vegetal, sua falta paralisa o crescimento e asplantas apresentam uma tendência deflorir e frutificar numa tentativa de sobrevivência, dando flores e frutos pequenos e se tornando raquíticas com folhas descoradas ou verde-azuladas.

Astrês formas de nitrogênio que os adubos foliares de boa qualidade oferecem, tempor base o fato das plantas nas suas diversas fases de crescimento preferirem uma à outra forma. As plantas jovens parecem absorver especialmente o nitrogênio nítrico.

O nitrogênio tem grande mobilidade; quando as raízes são incapazes de absorver as quantidades exigidas de nitrogênio, os compostos nitrogenados das partes velhas são autolizados e transportados para as regiões novas de crescimento. O mesmo ocorre quando a planta começa um novo crescimento e tira os compostos nitrogenados das folhas mais velhas para garantir o desenvolvimento. Daí não ser recomendado, para o embelezamento das plantas, cortar as folhas amareladas e sim deixa-las cair naturalmente.

Na prática, os adubos foliares apresentam o nitrogênio nítrico na forma de nitrato de potássio; o nitrogênio amoniacal, como fosfato de amónio e o nitrogênio orgânico, como uréia, que, pela ação dos microrganismos se transforma em nitrato.

FÓSFORO(P,O,).

É outro macro elemento aniônico básico da vida vegetal, agindo associado ao nitrogênio, e sendo ao contrário deste, que prolonga a vegetação, o grande fator de precocidade e qualidade, sendo absorvido na forma de fosfato. Representa menos de 1% na matéria seca.

Sua atividade principal está relacionada coma floração, a frutificação, o desenvolvimento das raízes e a maturação dos órgãos vegetativos. Está presente no ácido nucleico e nos fosfolipídios.

Além de suas atividades básicas o fósforo coordena a respiração, a divisão celular, a formação das proteínas e do amido. O composto trifosfato de adenosina é o principal armazenador de energia, que será mais tarde transferida para os diversos processos orgânicos.

É facilmente redistribuído de um órgão parao outro, indo das folhas velhas para as novas, para os frutos e sementes.

As plantas bem supridas de fósforo são altamente resistentes às doenças.

Sua falta ou deficiência, que pode ser expressa por uma cor avermelhada das folhas, resulta num crescimento lento com sérios prejuízos para a floração, a frutificação e a formação de raízes, o que inibe o crescimento vegetal.

Os adubos foliares trazem o fósforo como fosfatos de amónio e de potássio, que também são fontes de nitrogênio amoniacal e de potássio.

POTÁSSIO (K,O)

Curioso papel representa este macro elemento catiônico na vida vegetal. Apesar denão entrarnos constituintes químicos dos vegetais, sua presença na seiva é indispensável, especialmente para a adubação nitrogenada, para o formação dos hidratos de carbono e sua translocação, regulando a atividade dosoutros nutrientes. Ativa as enzimas e promove o crescimento dos tecidos menistemáticos. Poucos esabe sobre sua ação, que parece ser catalítica.

As doses de nitrogênio e potássio tem estreita relação e para boa utilização pelas plantas devem ser variadas simultaneamente.

Quando o teor de potássio aumenta na seiva, há uma economia de águanos tecidos, pois esseelemento regulando o fechamento dos estómatos diminui a transpiração, garantindo maior resistência à secura e às geadas, aumentando a resistência as doencas.

Como o fósforo, também favorece a formação das raízes, a formação do amido e o amadurecimento dos frutos. Toma os tecidos mais rígidos e menos quebradiços.

Alterações no amadurecimento dos frutos, folhas amareladas e ressequidas diminuindo a fotossíntese e reduzindo os hidratos de carbono, podem indicar falta deste elemento.

Essemacroelemento, que asplantas necessitamem quantidades elevadas, é absorvido na forma de potássio iônico e quando no interior das plantas é facilmente translocável, acumulando-se, especialmente, nas partes novas.

Nos adubos foliares o potássio entra na forma de nitrato de potássio e de fosfato de potássio, que também são fontes de nitrogênio nítrico e de fosfato respectivamente.

CÁLCIO

A pesar de não ter seu papel fisiológico bem esclarecido, ele é indispensável atodas asplantas superiores. Por exemplo, sabe-seque as raizes necessitam dele para crescer, o conteúdo proteíco aumenta na razão direta do aumento deste elemento.

Elemento básico no equilibrio ácido-básico dos vegetais.

A alteração desse equilibrio prejudica ou diminui enormemente o crescimento, além de alterar a forma dos tecidos vegetais, diminuindo a formação das raízes e parando a floração e frutificação.

ENXOFRE

Elemento químico que corre paralelamente ao nitrogênio, entrando na composição das proteínas, sendo também ativador de certas enzimas. Sua carência produz alteração semelhante à do nitrogênio.

FERRO

Indispensável à formação da clorofila. Sua deficiência produz folhas cloróticas (amareladas) total ou parcialmente.

SÓDIO

Ação semelhante ao potássio, não podendo entretanto substituí-lo.

Algumas plantas, como o côco da Bahia, têm preferência pelo sódio; para outras é prejudicial. Sua falta se traduz pelo murchar rápido das plantas em épocas secas.

MAGNÉSIO

É parte integrante da molécula da clorofila esó isto basta para mostrar sua importância. Além disso tem papel importante no metabolismo do fósforo, na atividade de certas enzimas, etc.

É básico na composição da clorofila, sendo seu único mineral. Sua falta provoca tons vermelho alaranjados nas folhas.

MICROELEMENTOS

Estão para as plantas assim como as vitaminas estão para os animais. Se bem que seu papel não esteja bem definido, sua falta produz carências graves, como se pode ver na relação a seguir.

MANGANÊS

Como o ferro favorece a formação de clorofila embora não entre na sua fórmula. Clorose entre as nervuras das folhas e nas suas margens, indicam sua deficiência

BORO

Como as vitaminas para os animais é exigido em quantidade mínimas. Escurecimento de folhas, raquitismo e deformação dos brotos são alguns dos sintomas de sua falta.

COBRE

Em quantidades mínimas, é indispensável às plantas; em excesso é muito tóxico. Em falta, muito rara por sinal, pode produzir amarelecimento das folhas com extremidade esbranquiçadas.

ZINCO

Em quantidades mínimas evita diversas doenças, sendo também ativador de enzimas. É também essencial na síntese do triptofano e do ácido indol-acético.

COBALTO

É um catalizador.

IODO

Fala-se na importância desse elemento para a floração de Loelia lobata

pH DAS SOLUÇÕES

A acideze a alcalinidade tem ação pre-ponderante sobre a absorção das substâncias nutritivas. O excesso de um ou de outro pode produzir alteração do sistema radicular e dos caules e folhas.

As plantas só absorvem os nutriente numa faixa estreita de pH e esses valores variam dentro de certos limites para cada espécie vegetal

Além disso, geralmente o meio ácido dificulta a dissolução de certos sais. Sabe-se também que a acidez excessiva pode, por outro lado solubilizar quantidades exageradas de sais de manganês, ferro, zinco, cobre e alumínio, o que toma o meio tóxico para as plantas.

Parece que só na faixa de pH, compreendido entre 6 e 7, os sais são solubilizados nas quantidades ideais e entre 4 e 9, a absorção é possível. A alcalinidade alta por sua vez, insolubilizando o ferro, o manganês, etc., cria as deficiências desses minerais.

FATORES QUE FAVORECEM A ABSORÇÃO DO ADUBO FOLIAR.

A) IDADE DAS FOLHAS:

Asnovas absorvemmais, consumindo os nutrientes emquantidade, favorecendo a translocação dos elementos.

B) A PRESENÇA DE CERTOS ELEMENTOS:

Ajuda a absorção de outros como por exemplo a uréia que é absorvida rapidamente, carreando outros elementos.

OUELATOS

O aproveitamento dos elementos químicos do adubo, principalmente os oligoelementos, nem semprecorresponde a expectativa em razão de interferências diversas, como seja alcalinidade do substrato que faz precipitar, como hidróxido, alguns metais. A acidez alta que insolubiliza alguns elementos; incompatibilidade entre elementos químicos gerando subprodutos insolúveis. (Ex.: nitrato de cálcio e sulfato de amónio, dando precipitado de sulfato de cálcio).

Em função disso passou-se a usar produtos "quelados" que são compostos químicos nos quais um átomo central, frequentemente metálico é envolvido por anéis convalentes de dois ou mais átomos de outras moléculas ou íons chamados ligantes.

Com a formação dos quelatos os metais perdem suas propriedades iônicas, não podendo ser detectados pelos testes qualitativos, e deixam de gerar os inconvenientes acimar elacionados, daí seu uso cada vez mais difundido nos adubos.

Os quelatos retardam a absorção, mas a translocação dos elementos quelados é bem mais rápida

Asplantas tema propriedade de romperos que latos após a absorção, aproveitando os metais.

LUZ

A energia luminosa é indispensável à absorção foliar.

UMIDADE DO SUBSTRATO

As plantas com boa disponibilidade de água, mantém suas células túrgidas e com boa hidratação da cutícula, o que favorece a penetração dos nutrientes. Quando a planta começa a murchar, a absorção foliar diminui drasticamente. Daí evitar-se as horas mais quentes do dia, quando as plantas estão mais secas, bem como davantagem de uma rega navéspera da adubação foliar.

TEMPERATURA

A ótima está por volta dos 21°C.

VENTOS

São prejudiciais porque favorecem a rápida evaporação, diminuindo o tempo de contato da solução nutritiva com a superfície da planta.

UMIDADE DO AR

A umidade relativa do ar quando elevada, favorece a absorção porque mantém a cutícula hidratada e retarda a evaporação da solução, permitindo sua melhor distribuição na superfície foliar.

SOLUBILIDADE PERFEITA

A dissolução rápida e completa dos compostos usados como fonte

de nutrientes influi na eficiência da adubação. A boa qualidade dos sais evita a formação de resíduos que podem ser injuriosos às plantas.

A CONCENTRAÇÃO DA SOLUÇÃO

Dependeda tolerância de cada planta. Umas suportam concentrações altas, outras não, e pode ocorrer que imaduras nas pontas das folhas novas. Daí, os melhores resultados serem obtidos com várias aplicações de soluções mais diluídas.

HORÁRIO IDEAL PARA APLICAÇÃO DAS SOLUÇÕES

Devem ser evitadas as horas mais quentes do dia. Nas nossas condições, especialmente no verão, deve evitar-se pulverizar entre 9 a 16 horas.

FORMULAS E ADEOUAÇÃO DO ADUBO FOLIAR

As soluções fertilizantes, em decorrência da maior concentração desse ou daquele macroelemento, podem ser de vários tipos, que se expressa por três números: o 1º indicando aconcentração do nitrogênio, o 2º do fósforo e o 3º do potássio.

Assim, as fórmulas 18-18-18 ou 20-20-20 são aquelas em que os três elementos estão equilibrados. A fórmula 20-20-20 tem uma maior concentração de elementos fertilizantes, isto é 60%. Tem uso geral, plantas adultas, estabilizadas.

Nafórmula 30-10-10, o teor de nitrogênio é três vezes mais altaque o P ou o K, perfazendo a fórmula 50% de elementos fertilizantes. Ela é recomendada para as plantas novas (Seedlings) desde a germinação até a primeira floração. Tambémé usada para estimular a brotação de plantas adultas e especialmente recomendada nas culturas de folhagens.

Nafórmula 10-30-20 vê-se uma predo-minância do fósforo, sendo muito usada na preparação da floração.

Do exposto acima pode-se resumir a escolha da adubação foliar:

A) FASE DO CRESCIMENTO OU NA BROTAÇÃO:

A fórmula mais adequada é a que no balanço dos nutrientes, o Nitrogênio predomina, (30-10-10) podendo-se intercalar uma fórmula fosfatada, isto é, pulverizar ora com uma nitrogenada, ora com uma fosfatada, tendo emvista que o fósforo forece o desenvolvimento do sistema radicular.

B) FASE DA FLORAÇÃO:

É a que antecede á floração, nesta fase é fundamental uma maior percentual de fósforo, elemento básico das boas floradas. (10-30-20)

C) FASE DA FRUTIFICAÇÃO:

É a que segue à floração, sendo o nutriente fundamental o potássio. É pouco usada na floricultura.

MODO DE USAR:

A aplicação deve ser criteriosamente feita para seu melhor aproveitamento.

De início impõe-se a regra básica do uso da fórmula certa, em época certa e com a regularidade necessária para que a planta se adapte.

Deve-se usar os pulverizadores habituais, capazes de produzir um leque de gotículas bem finas, que molhem uniformemente as duas faces da folha

Por uma questão pura de economia do adubo, deve-se evitar um excesso de molhagem ou gotas muito grandes que fazem o escorrimento da solução. É bom lembrar, no entanto, que a solução que escorrer para o substrato, só pode fazer bem, pois as raizes também vão absorve-la.

A aplicação periódica do adubo é mais indicada, desde que sejam usadas soluções mais diluídas, cuja concentração ótima é determinada pela experiência em cada caso.

Oadubo deve serusado como um agentemolhante deboa qualidade.

A solução fertilizante deve ser preparada na concentração de 0,5 à 1 g/L, em água limpa, de preferência baixa em cloro.

Para melhor aproveitamento pelas plantas, recomenda-se uma rega na véspera da adubação, para que as plantas fiquem bem supridas de água.

A aplicação deve ser repetida cada 7 ou 15 dias, recomeçando as regas normais 24 à 48 horas após a aplicação.

O equipamento deve estar muito limpo, livre de residuos que possam ser tóxicos para as plantas.

O uso simultâneo do adubo com pesticidas, fungicidas, etc., se não for bem equacionado pode trazer problemas de incompatibilidade ou de desequilibro da fórmula do adubo.

O tratamento regular com o actubo foliar produz crescimento mais rápido eviçoso, melhor floração, aumento da resistência das plantas às doenças e variações climáticas, facilitando ainda a aclimatação e o enraizamento.

CONSIDERAÇÕES FINAIS

Não se pode esquecer que os elementos químicos em pequenas doses são muito favoráveis as plantas, mas em concentrações altas, são altamente tóxicas.

Adubações muitofrequentes podem, pela evaporação da águado adubo, produzir concentrações altas dos sais com depósitos nas folhas e raizes com graves consequências. Daí a conveniência de regas com água pura entre as adubações

. A adubação excessiva produz plantas muito fortes, com crescimento vegetativo abundante, com folhagem verde escuro, com muitos brotos novos em detrimento da floração. Algumas pessoas argumentam ser a adubação foliar muito cara. É necessário lembrar que ela deve ser complementar, sendo as quantidades usadas muito pequenas.

A escolha do adubo é da maior importância. Os adubos devem ter procedência garantida, e de fornecedores credenciados. Devem ser fácil e-completamente solúveisna água, dando solução incolor, límpidano depositando resíduo, mesmo após 24 horas.

Os produtos químicos usados são de alto custo, pois devem ter alto grau depureza. Cabe lembraro caso da uréia, adubo degrande valor como fonte de nitrogênio orgânico. Esse tão benéfico elemento, no entretanto, tem como contaminante habitual o biureto, substância altamente tóxica para as plantas, especialmente as novas. Outros sais quando não muito puros podem ter acidez muito alta, queimando as plantas (nitratos, cloretos, etc.).

As plantas recém plantadas ou mudadas, necessitam de adubação muito reduzida; praticamente só o nitrogênio (N) é exigido. Observem que essas plantas costumam ficar com as folhas amareladas pela faltade nitrogênio.

Não esqueçam que as plantas, para absorverem alimento, precisam de água e a umidade do substrato é necessária para termos plantas com bom estado vegetativo.

Uma das grandes vantagens da adubação foliar é que as plantas absorvem aproximadamente 90% do adubo, sendo que uns elementos são mais assimiláveis que outros. Enquanto isto o adubo colo cado no substratoperde, no mínimo, 50%.

Minutos após a aplicação do actubo, ele completa a primeira fase da absorção e no fim de algumas horas chega às raízes.

BIBLIOGRAFIA

Orchid Biology - Reviews and Perspectives
 Edited by Joseph Arditti - Vol. I
 Vitamin Requirements and Metabolism in Orchids
 Joseph Arditti and Charles R. Harrison

 Orchid Biology - Reviews and Perspectives Edited by Joseph Arditti - Vol. II Mineral Nutrition of Orchids

Hugh A. Poole and Thomas J. Seehan

 The Orchids - Scientific Studies Carl L. Withner

John Willy e Lons, NY.

4) American Orchid Culture - A.T. De La Mare omp.Inc., NY - 1948

dward A. White

 Bioquímica Vegetal
 Davies - J. Giovanelli - T. AP. Rees Omega - Barcelona

6) Regulador de Crescimento

R. Beaulien e outros

Oihos - Tau S.A. Barcelona

 Adubos - Guia Prático de Fertilização André Gross - Liv. Classica Editora

8) Biologia Vegetal

Raven - Evert - Curtis

Guanabara Dois

9) Elementos de Nutrição Mineral das Plantas

E. Malavolta

Editora Agronômica Ceres Ltda

 Manual de Química Agrícola - Adubos e Adubação

E. Malavolta - Biblioteca Agronômica Ceres

11) Orchid Culture - 7 - Nutrition

Stephan R. Batchelor

Am. Orch. Soc. Bulletin - Vol 50 - nº 09 - 1981

12) Orchid Culture - 8 - Fertilizing

Stephan R. Batchelor

Am. Orch. Soc. Bulletin - Vol. 50 - nº 19 - 1981

13) Floricultura Brasileira Nº 02 - Orquideas e Bromélias

Harry Blossfeld (1964)

14) Princípio de Adubação Foliar

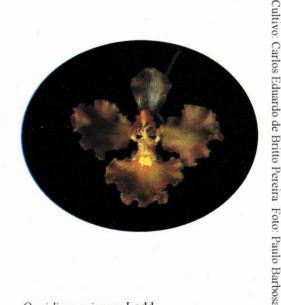
14) Frincipio de Adubação Fonar

Paulo Nogueira de Camargo

Editora Agron. Ceres - 19701

5) Manual de Adubação Foliar

Paulo N. Camargo - Ody Silva


Editora Herba - São Paulo - 1975

* RUA ELVIRA NIEMEYER, N° 214, CEP2000-000 - SÃO CONRADO RIO DE JANEIRO,RJ

Notas sobre o gênero Oncidium - X

Oncidium crispum Lodd. na ilustração clássica da família Orchidaceae.

Carlos Eduardo de Britto Pereira *

Oncidium crispum Lodd.

A PARTIR DE PLANTAS COLETADAS NA Serra dos Órgãos, no Estado do Rio de Janeiro, o *O. crispum* foi descrito por Loddiges, em 1832, na prancha de n°1854, do volume 19, do **Botanical Cabinet,** publicação de que ele foi o editor. Sem suspeitar, Loddiges havia descrito uma das mais admiradas dentre as espécies de *Oncidium* do Brasil, a qual, posteriormente, foi ilustrada em quase todas publicações botânicas importantes do século passado e do início deste, publicações estas que são usadas, como referência, quando se estuda a família das orquídeas.

Como exemplo, citarei algumas poucas dessas publicações, com seus respectivos editores, que foram personagens importantes na classificação das orquídeas brasileiras: Hooker, no Botanical Magazine, Lindley, no Botanical Register, Regel, no Gartenflora, Linden, na Lindenia, Cogniaux, na Flora Brasiliensis e no Dictionnaire Iconographique des Orchidées, Schlechter, no Orchideen, eBarboza Rodrigues, na Iconografia das Orquídeas do Brasil.

Esta última obra citada é, seguramente, a mais rara de todas, nunca tendo sido publicada, seus originais fazendo parte do acervo da Biblioteca do Jardim Botânico do Rio de Janeiro que,hoje, tem, justamente, o nome de Barboza Rodrigues .

Entretanto, esta obra talvez, brevemente, possa vir a ser publicada, já que o Dr. Samuel Sprunger, de Basileia, Suiça (que foi o editor da reprodução do **Botanical Register** e do **Botanical Magazine**), está em conversação com o governo brasileiro com este objetivo. Isto será muito importante para a orquidologia internacional e, também, para o Jardim Botânico do Rio de Janeiro e para o próprio país, uma vez que os patrocinadores dessa empreitada se propõem a fazer uma restauração completa dos originais, que já apresentam um certo grau de deterioração.

O O. crispum pertence à secção crispa do gênero Oncidium, que tem, como características principais, sépalas e pétalas conspícuas e estreitadas na base; sépalas laterais soldadas na sua base e escondidas atrás do labelo; pétalas grandes, normalmente maiores que as sépalas; labelo grande e com número impar de calos no seu disco.

As plantas do *O. crispum* possuem pseudobulbos, de modo geral, grandes, com duas ou tres folhas no ápice. As inflorescências são, normalmente, grandes, ramificadas e com muitas flores.

Depois de sua descrição, apareceram algumas variedades horticulturais da espécie, como a variedade *rodriguesii* e a variedade *lionetianum*, descritas por Cogniaux, as var. *olivaceum* e *ochraceum*, descritas por Reichenbach f., e a variedade *grandiflorum* e a raríssima var. *flavum*, somente citadas na bibliografia.

O O. crispum é uma espécie epífita típica da Serra dos Órgãos e Serra do Mar e de algumas localidades do Estado de Minas Gerais, zonas úmidas, bem ventiladas e de clima ameno, portanto.

Para cultivar a espécie, com sucesso, deve procurar simular-se as condições do habi-

tat natural. Normalmente preferem palitos de xaxim ou pedaços de casca de árvore e gostam muito de receber um borrifamento de água no fim da tarde, especialmente no verão. Devem ficar em um lugar bem ventilado da estufa

Anos atrás, li em uma revista americana um artigo de um senhor que tinha construido uma "máquina" de fazer neblina, o que o fez conseguir grande sucesso no cultivo das espécies dessa secção, o que, quase sempre, é muito difícil quando as condições ambientais são muito diferentes das do habitat natural. Nesse artigo, ele citava, como exemplo, o *O. enderianum* Hort.

*Rua São Clemente 398/907 Botafogo 22260-000 Rio, RJ.

ESTUDO SISTEMÁTICO DO GÊNERO PABSTIA

Villa ika Paiwa Castro Nem?

RESUMO

O presente estudo tem por finalidade esclarecer, organizar e facilitar o reconhecimento das espécies do gênero Pabstia. É inicialmente comentada a origem do nome Pabstia, a revisão das espécies e a relação das espécies aceitas tendo em vista a revisão taxonômica e a descoberta de novas espécies. E apresentada uma chavede identificação euma diagnose, com desenhose fotografias. a fim de facilitar a identificação das espécies. É mostrada a distribuição geográfica e comentado em que tipo de vegetação e clima são encontradas e o seu modo de cultura.

ABSTRACT

The purpose of this work is to clarify, organise and facilitate the recognition of the various species in the genus Pabstia. The article begins with an explanation of the origin of the name Pabstia and continues with a redefinition of the species, based on a taxonomical revision of the genus. The article terminates with a revision of new species recently described. An identification key, together with distribution maps and photographs, has been included. This should facilitate the identification of the different species.

1 - Pabstia jugosa

O GÊNERO PABSTIA, EM TERMOS DE PLANTA, APARECEU, descrito, pela primeira vez, como uma Maxillaria, visto que, no inicio do século XIX, existiam poucos gêneros e as novas espécies deorquideas descobertas eram, em sua grandemaioria, classificadas em um dos gêneros até então existentes.

A primeira espécie deste gênero foi descrita por Lindley em 1832 com o nome de Maxillaria virides (1), no mesmo ano, Hooker descreveu uma outra espécie deste gênero, como Maxilla-ria placanthera (2). Sómais tarde foi descrita uma outra espécie deste gênero, novamente por Lindley, ainda como Maxillaria, neste caso como Maxillaria jugosa (3).

O nome Colax foi proposto, por Lindley, em 1843 (4) porque ele reconhecia ser a espécie diferente do gênero Maxillaria, sendo muito mais afim dos gêneros Promenaea e Warrea, porém com o caudículo bastante diferente

Este nome permaneceu, como tal, até 1973, quando Garay (5), revendo as publicações originais da proposição original do nome Colax, verificou que este nome já tinha sido usado para algumas Maxallaria, tendo o próprio Lindley voltado atrás quanto a sua proposição inicial. Garay argumentou que, por este motivo, o nome não poderia ser mais utilizado para definir uma nova espécie, propondo então o nome de Pabstia, em homenagem a Guido Pabst. Da revisão do gênero Pabstia proposto por Garay, relacionamos as espécies, até então, válidas:

PABSTLA JUGOSA (Lindl.) Garav PABSTIA MODESTIOR (Rchb.f.) Garay PABSTIA PLACANTHERA (Hook.) Garay PABSTIA TRIPTERA (Rolfe) Garav PABSTIA VIRIDIS (Lindl.) Garay

De algum tempo, temos observado a semelhança entre as ilustrações apresentadas nas descrições de Maxillaria placanthera e Maxillaria viridis. Em visita ao Kew Institute, em abril de 1991, tive a oportunidade de analisar e fotografar as exsicatas do gênero Pabstia ali depositadas. Pudemos observar que existem duas exsicatas de *Pabstia*(Maxillaria) placanthera eque o typus que corresponde à descrição é a prancha denº3173 e, consequentemente, a planta que serviu para a descrição de Maxillaria placanthera era, em tudo, semelhante à descrição de Maxillaria viridis, donde concluirmos ser a primeira sinônima da segunda. Existia, também, uma segunda prancha, com outra exsicata, tida como Pabstia (Maxillaria) placanthera, com um desenho do labelo, onde este se mostrava bastante trilobado e diferente do typus. Isto nos causou dúvida quanto a possibilidade de ser outra espécie, confundida como sendo um isotypus de Pabstia(Maxillaria) placanthera. Hoje depois de analisar várias plantas de Pabstia viridis, sabemos que o lobo mediano varia

bastante, como pode ser visto na foto 1.

Em março de 1990, em visita ao Orquidário Binot, me chamou a atenção a existência de uma *Pabstia* florida que, até então, não era de meu conhecimento. Inicialmente pensei tratarse de híbrido. Adquiri o exemplar em questão e outros que pareciamserda mesma espécie. Tempos depois, um dos exemplares floriu e então pude fotografar e desenhar a planta e seus componentes florais. Foi-me impossível determinar de que espécie se tratava. Um híbrido entre *Pabstia jugosa* e *viridis* não podia ser porque é uma planta com flor bem menor e aberta, fugindo completamente das espécies citadas. Poderia ser um híbrido com a *Pabstia modestior*, porém esta também tem o labelo mais largo que comprido e as pétalas e sépalas são a conchavadas, logo estávamos diante de uma nova espécie.

Em minha visita ao Kew Institute, pude constatar que a exsicata de *Pabstia triptera*, correspondia bem às características desta nova planta. Podemosassim dizer que tivemosa oportunidade

de redescobrir esta espécie.

Pensava que tinha completado o estudo das *Pabstia*, quando em minha última visita ao estado do Espírito Santo, em visita ao orquidário de Vital Schunk, em final de dezembro de 1991, tive a oportunidade de verificar que existiam, ali, algumas *Pabstia* floridas que, à primeira vista, pensei tratar-se da *Pabstia modestior*. Adquirialguns exemplares, visto que gostaria de fazer comparação com os exemplares, que possuia, da região da Serra do Mar, próxima de S.Paulo. Uma análise mais detalhada mostrou que estas plantas em nada correspondiam às espécies, até então, por mimanalisadas, o que me levou a concluir que se tratava de uma nova espécie, que, aliás, foi recentemente descrita, com o nome de *Pabstia shunkeana* P.Castro(foto 5).

Relação das espécies de *Pabstia*, aceitas no presente trabalho e seus respectivos sinônimos.

PABSTIA JUGOSA PABSTIA MODESTIOR PABSTIA TRIPTERA PABSTIA VIRIDIS PABSTIA SHUNKEANA PABSTIA JUGOSA (Lindl.) Garav. (5) Basionym: Maxillaria jugosa Lindl.(3) Synonym.: Colax jugosus (Lindl.) Lindl.(4) Lycaste jugosa (Lindl.) Nichols,(7) Zvgopetalum jugosum (Lindl.)Schchltr.(8) Zygopetalum stapeliodes Klotzsch, ex Reichb. f.,(9) Pabstia jugosa var. rufina (Reichb.f.) Garav.(5) Basionym. Colax jugosus var. rufimus Reichb. f.(10) Synonym. Lycaste jugosa var. rufina (Reichb.f.) Nichols(11) Pabstia jugosa var. punctacta (Reichb.f) Nichols.(11) Basionym: Colax jugosus var. puntactus Reichb.f.(12) Synonym://weaste.jugosa.var.puntacta(Reichb.f.) Nichols.(11) Pabstia modestior (Reichb.f.) Garay.(5)
Basionym: Colax modestior Reichb.f.

Synonym.: Colax viridis var. trimaculatus Porsch.(14)

Pabstia triptera (Rolfe) Garay.(5)
Basionym: Colax tripterus Rolfe.(15)

Pabstia viridis (Lindl.) Garay (5)

Basionym: Maxillaria viridis Lindl:(1)

Sinonym.: Colax viridis (Lindl.) Lindl.(4)

Maxillaria viridis var. platvsepala Regel. (20)

Lycaste viridis (Lindl.) Benth.(16)

Zvgopetalum viridis (Lindl) Schltr.(8)

Pabstia placanthera (Hook.) Garay.(5)

Maxillaria placanthera Hook.(2)

Colax placanthera (Hook.) Lindl.(4)

Maxillaria cyanocheila Hoffmsgg.(17)

Maxillaria viridis var. stenosepala Regel.(18)

Colax viridis var. placanthera (Hook) Stein.(19)

Zygopetalum placantherum (Hook.) Schltr.(8)

Maxillaria viridis var. phiriflora Regel.(20)

Colax viridis var. phiriflora (Lindl.) Schltr.(8)

Colax puydtii Linden & Andri.(21)

Lycaste puydtii (Linden & Andri) Nichols.(22)

Colax viridis var. puydtii (Linden & Andri) Cogn.(23)

Pabstia shunkeana P.Castro.(6)

CHAVE DE IDENTIFICAÇÃO DO GÊNERO PABSTIA

1.a - lobo mediano do labelo em prolongamento da base dos lobos laterais(-2)

1.b-lobo mediano do labelo recurvado em relação a base

dos lobos laterais. (-3)

2.a - Flores grandes para o gênero, sépalas brancas marfim (raramente pintalgadas), pétalas de igual cor, intensamente pintalgadas de púrpura. Labelo igualmente branco marfim, com pintas e listras violáceas nos lobos laterais. Lobo mediano do labelo largo ovalado.

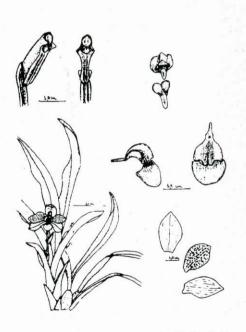
2.b - Flores pequenas para o gênero, com rácimo floral curto, com pétalas e sépalas não completamente distendidas de cor verde, sépalos um pouco aconchavados. Na base das pétalas e base externa do lobomediano do labelo mancha púrpura intensa. Lobo mediano do labelo, mais largo que longo, com apículo

virado para cima.

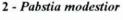
3.a-Lobomediano do labelo mais comprido do que largo


e sépalas e pétalas distendidas (- 4)

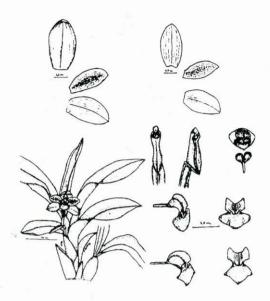
3.b - Lobo mediano do labelo mais largo ou de igual comprimento e sépalas e pétalas não completamente distendidos (-5)


4.a - Flores de tamanho intermediário com sépalas e pétalas bem planas e abertas de cor verde. As pétalas também de cor verde intensamente pintalgadas de púrpura, principalmente no veio central, labelo branco, com venulações violáceas nos lobos laterais. Calcar formando ângulo agudo com o ovário.

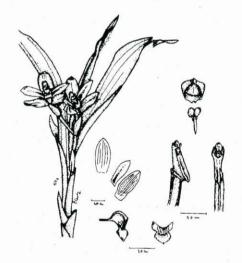
 5.a - Flores, de médias a grandes, para o gênero, lobos medianos do labelo, esplanados, menores que a largura do lobo mediano. Sépalas verdes, ligeiramente aconchavadas, pétalas verdes intensamente pintalgadas de verde. Labelo de fundo branco, sombreado de lilás e com venulações de mesma cor nos lobos laterais. Pétalas e sépalas não completamente distendidas.


5.b-Flores pequenas para o gênero. Lobos medianos do labelo esplanados, maiores que a largura do lobo mediano. Sépalas verdes, ligeiramente aconchavadas, pétalas verdes elítico alongadas, com pintas púrpuras, mais intensas na base e que se prolongam para a extremidade. Labelo de fundo branco, lobo mediano triangular e pequeno para a espécie. Lobos laterais com estrias lilases, que partem da crista dentada entre os lobos laterais e o mediano em direção ao unguículo.

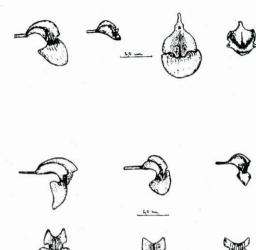
DIAGNOSE DAS ESPÉCIES DO GÊNERO PABSTIA E DISTINÇÃO ENTRE ELAS.



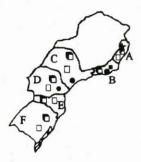
1 - Pabstia jugosa



3 - Pabstia triptera



4 - Pabstia viridis


5 - Pabstia shunkeana

LOBO MEDIANO DO LABELO EM PROLONGAMENTO DA BASE DOS LOBOS

DISTRIBUIÇÃO GEOGRÁFICA

A - ESPÍRITO SANTO D - PARANÁ
B-RIODEJANEIRO E - SANTA CATARINA
C - SÃO PAULO F - RIO GRANDE DO SUL

- Pabstia viridis
- *-Pabstia shunkeana
- Pabstia triptera
- Pabstia modestion
- Pabstia jugosa

A *Pabstia* é uma orquídea tipicamente brasileira, das partes altas da serra do Mar, sendo encontrada desde o Estado do Rio Grande do Sul até o do Espírito Santo. Podemos, assim, estabelecer sua distribuição através dos exemplares de nosso conhecimento

Pabstia jugosa - é a de maior distribuição geográfica, sendo citada desde o Rio Grande do Sul até o Espírito Santo, nas partes elevadas, geralmente humícola, vegetando nas partes mais úmidas das matas ou sobre árvores junto a pequenos riachos.

Pabstiamodestior-Pela origem dos exemplares, é planta do sul do Brasil, de S.Paulo até o Rio Grande do Sul. Recebemos, também, um exemplar do Estado do Espírito Santo, planta pequena, que gosta de crescer em lugar sujeito a constantes neblinas.

Pabstiatriptera - Planta proveniente do estado do Rio de Janeiro, nas altitudes de 1000 - 1500m, da Serra dos Órgãos.

Pabstia viridis - Originária do Rio de Janeiro e Espírito Santo, encontrada nas mesmas condições de Pabstia jugosa. O porte da planta é maior que o das outras Pabstia.

Pabstia shunkeana - Encontrada somente no Estado do Espírito Santo, em região acima de 1000m, em grotões úmidos.

CULTURA DO GÊNERO

Como comentado, este gênero é de região bastante úmida e relativamente fresca, logo, para se terrum cultivo adequado, deve acondicionar-se estas plantas em lugares com 30% de iluminação, frescos e com elevada umidade relativa do ar, de preferência, nunca abaixo de 65%. O substrato pode ser xaxim, de preferência misturado com esfagno, para se ter uma maior umidade. Recomenda-se uma adubação intensa sobretudo com ácidos

2 - Pabstia modestior

3 - Pabstia triptera

4 - Pabstia viridis

5 - Pabstia shunkeana

úmicos. Regar as plantas com certo cuidado, pois molhando os brotos novos estes podem fungar. As plantas podem ser atacadas pelos mesmos insetos, fungos e bactérias que atacam as outras orquídeas, por isto os mesmos inseticidas e fungicidas que usamos para as outras orquídeas podem ser usadas também em *Pabstia*.

AGRADECIMENTOS

Gostariamos de agradecer ao Dr. Phillip J. Cribbe ao Eng. Agrônomo Antonio Toscano de Brito, que me facilitaram a consulta das exsicatas de *Pabstia* no Kew Institute e a Gustavo Romero curador do Oakes Ames Orchid Herbaria (Havard University Herbaria) e a German Carnevali, Botânico do Misouri Botanical Garden que me auxiliaram na bibliografia para o estudo do trabalho sobre *Pabstia*.

BIBLIOGRAFIA

- (1)Bot. Reg. -Vol.18: t 1510,(1832)- Lindl. Maxillaria viridis
- (2) Bot. Mag. -Vol.59: t. 3173,(1832)- Hook. Maxillaria placanthera
- (3) Bot. Reg. -vol.27: misc. p. 51,(1841)- Lindl. Maxillaria jugosa
- (4) Bot. Reg. -Vol.29: misc. p. 50/51.(1843)- Lindl. Colax
- (5)Bradea Vol.i, p.301-308,(1973)- Caray, L.A.- Studies in American Orchids VIII
- (6)Orquidário-Vol.7: n: 1, p.14-17,(1993)- P.Castro-Pabstia shunkeana
- (7)-Benth & hook, Gen. Plant. Vol. III: p. 548, (1883)- Nichols-Lycaste jugosa (Lindl.)
- (8)Die Orchideen p. 422/423.(1914)- Schltr. Zygopetalum jugosum(Lindl.)

- (9) Xenia Orch. Vol.I, p.107,(1854). Klotzsch. ex.Reickb.f.- Zygopetahun stapelioides
- (10) Card. chron.-n.s.19: p.784,(1883). Reichb. f.-Colax jucosus var. nafimus (11) Dict. of Cardn.-Vol.II: p.304,(1885). Nichols.-Lycaste jugosa var. nafima (Reichb.
- (12) Gard. Chron.- n.s.19: p.688,(1883)- Reichb. f.- Colax jucosus var. puntactus
- (13) Hamb. Gartenz. Vol 16: p. 14,(1860)- Reichb.f.- Colax modestion
- (14)Denkschr. Akad. Winssensch.-Vol.79: p. 130(1902)- Porsch.- Colax viridis var. trimaculatus
- (15) Kew bull-p.34,(1906)-Rolfe-Colax tripterus
- (16) Hand-list Orch. Kew-p. 137, (1896)-Benth. ex.-Lycaste viridis(Lindl.)
- (17) Verzeichn. Orch.-p. 55, (1843)- Hoffmsgg.-Maxillaria cyanocheila
- (18)Ann. Sci. Nat.-vol.6: ser. 4, p. 375 (1856)- Regel-Maxillaria viridis var. stenosepala
- (19)Orchideenb.-p.160.(1892)- Stein,-Colax viridis var. placanthera
- (20)Ann. Sci. Nat. Vol.6, ser. 4: p.375/376,(1856). Regel- Maxillaria viridis var.platysepala// Maxillaria viridis var.platysepala// Maxillaria viridis var.platysepala//
- (21) Illustr. Hort Vol.27: t.369, p.5, (1880) Linden & Andri. Colax puydtii
- (22) III. Dict. Card. Vol.2: p. 304 (1885) Nichols-Lycaste puyditi (Linden & Andri) (23) Mart. Fl. Bras. Vol. III, V, p. 562 (1902) Cogn. Colax viridis var puyditi (Linden & Andri)
 - * Rua Vicente Galafassi no 549 11.000 - São Paulo SP.

MANUAIS ORQUIDARIO - 1

INICIAÇÃO À
OROUIDOFILIA

EDIÇÕES ORQUIDARIO 2^ EDIÇÃO 1993 Estará sendo lançado e posto à venda, durante a

"OrquidaRIO na Primavera",

de 23 a 26 de 1993,

no Museu de Arte Moderna do Rio de Janeiro.

Preço de lançamento, para os sócios da Orquida<u>RIO</u>: CR\$500,00

Orquídeas do Brasil

I - Mato Grosso do Sul

Bifrenaria tetragona Campylocentrum selowii Capanemia micromera Catasetum taquariensis Catasetum fimbriatum Catasetum tigrinum Catasetum sanguineum Cattleya nobilior Cyrtopodium palidicosum Cyrtopodium paniculatum Encyclia linearifolioides Eulophia longifolia Epidendrum hydrophilum Epidendrum nocturnum Ionopsis paniculata Ionopsis utricularioides Leptotes unicolor Leaoa monophylla Lockhartia lunifera Macradenia multiflora Notylia sp Oncidium ceholleta Oncidium edwalii Oncidium macropetalum Oncidium pumilum Oncidium cruciatum Oncidium waluewa Phragmipedium vittatum Pleurothallis hoffmannseggiana Rodriguezia decora Sarcoglotiis sp. Schomburgkia crispa.

Há UMA RAZÃO PARTICULAR PARA ESTARMOS começando, este censo, preliminar, das orquídeas brasileiras, pelo Mato Grosso do Sul, um dos mais jovens estados da Federação, é que quem, primeiro, acorreu ao nosso primeiro chamamento foi o nosso sócio Álvaro Pereira dos Santos, de Campo Grande, capital do Estado.

Como é possível ver, não se trata de um rol exaustivo, nem mesmo de um levantamento botânico de toda a flora da família Orchidacaeae naquela região. Trata-se de evidenciar e documentar o trabalho infatigável de um orquidófilo amador que procura montar a base da sua coleção com plantas nativas do seu estado. Revelase Álvaro Pereira dos Santos um sério pesquisador em busca das belezas e riquezas que a exuberante mata daquele Estado guarda.

Evidencia o nosso correspondente, na sua correspondência, uma permanente preocupação pela preservação das espécies que vem encontrando e fazendo-as fotografar pelo seu amigo Manabu Matida. Angustia-se, também, pela devastação que vai presenciando, como no caso do *Epidendrum hydrophillum* que localizou no próprio município da capital, Campo Grande. Ao fornecer a ficha técnica escreveu: "Planta que tem por hábito vegetativo viver

como terrestre, dentro de rios, bem no meio deles. Por enquanto só reencontrei esta planta, as outras foram destruidas por banhistas. Neste lugar, quando as vi, pela primeira vez, havia, pelo menos, mais 20 plantas".

Acrescenta Álvaro ao registro fotográfico que nos mandou (nem sempre bom, é importante que se diga, não permitindo correta reprodução e, por isto, um conselho para o fotógrafo Matida: cuidado com os fundos, que devem ser os mais neutros possíveis, para que se possa ver, com realce, planta e flor, sobretudo, como éo caso, tratando-se de documentário; igualmente, luz e distância do objeto da foto), dados sobre localidade onde encontradas as plantas e algumas informações particulares sôbre habitats e época de floração. Vai muito bem no seu trabalho de catalogar as orquídeas do seu Estado, num exemplo a ser seguido.

Catasetum taquariensis albo

Editoria

Macradenia multiflora

Catasetum taquariensis

PERFIS

Alvaro Orquidófilo Pessoa

Faz tempo que a editoria não nos dá a seção "Como comecei", tão saborosa e,também, cheia dos ensinamentos que se contém no contar os atropelos das primeiras horas desta caminhada sem fim que é a orquidofilia. Pensando nisto, um dia destes, me veio a vontade de aventurar-me nessa vereda e já ia começar um texto sobre a

minha iniciação, quando recebi uma carta da minha irmã Regina (que é mais Mesquita do que eu, porque o é duas vezes...Mesquita e Mesquita), recordando as caminhadas, comnosso pai, pelos morros de Serrinha, na Bahia, para catar as "roxinhas", que como lembra ela, eram orquideas que, hoje, sei serem Laelias rupícolas...

Foi este o primeiro começo, pensei. O segundo, um dia contarei, pois tem uma caraterística peculiar, foi na verdade uma orquídea começando comigo...

Já o terceiro começo foi minha iniciação, como colecionador e cultivador (já que ainda não posso dizer-me orquidófilo, pois

não sofri o bastante para merecer o ápodo). Isto aconteceu quando conheci o Orquidófilo Álvaro Almério Azevedo Pessôa dos Santos, eis que este é o seu nome inteiro, extenso como apraz à grei agreste do Nordeste, tão bem retratada pelo romancista pernambucano Ariano Suassuna (não sei se amigo ou inimigo do clã que tanto

marcou o Sertão, os Pessoas, da Paraiba, de

Pernambuco e do resto do Brasil...).

Já o conhecia do serviço público e como brilhante advogado, mas não sabia que cultivava orquídeas. Durante uma das mais belas exposições da OrquidaRIO, creio que a primeira, inscrevi-me como sócio (e, de cara, ganhei do Hans Frank uma muda de *Catasetum*, que não sobreviveu muito

tempo, devidamente afogado que foi por mim, achando aue. como definhava. precisava de água e adubo...) e lá fui eu para a reunião da Ouinta Feira (assim mesmo, com maiúscula. pelo alto valor que tem). Calado e atento, como cabia a um neófito. fui abordado. intervalo, pelo Álvaro, a quem já reconhecera, que me perguntou se não eu...(este é um dos seus traços marcantes,

quando não está tenso, a jovialidade). Respondi que sim e que já o tinha reconhecido, mas pensara que se tratava de um sósia, pois não podia imaginar um especialista em Direito Urbano, orquidófilo. A resposta, ferina (outra caraterística...), não demorou: - E o que faz aqui um especialista em Direito Público?...

Naquela noite descobri, também, que Álvaro tinha casa e orquidário em Teresópolis, perto da minha casa, onde eu iniciava um arremedo de coleção. Convidou-me a visitá-lo e não precisou insistir. Passei a frequentar, cada vez mais encantado, a sua "exposição" permanente e de onde saía, por vezes, acabrunhado, porque comparava a exuberância do seu cultivo e a qualidade do seu plantel com o que eu tinha ... Mas sempre saía com uma planta boa, um vaso inteiro ou um magnânimo corte, eis que este é um outro traco do nosso perfilado, a generosidade. Já o vi, sem nenhum exclusivismo, entregar a Adhemar Manarini uma série de clones especiais, de que era o único possuidor conhecido, para serem meristemados e vulgarizados, pois acredita que beleza é para ser difundida e como sempre está na vanguarda, jamais terá somente plantas que todo mundo tem.

Companheiros de profissão, só fui descobrir o Álvaro Pessoa como orquidófilo dos maiores que já conheci (e olhe que já conheci e convivo com muitos da maior categoria, cujos nomes não relaciono para não ser fastidioso).

Mas não pensem que conviver com Álvaro, de tantas virtudes, é fácil assim. Tem a pernambucana franqueza rude que herdou do seu pai, o Capitão Pessôa, mais conhecido, no Brasil e no exterior, pela bela cruza que Rolf Altenburg fez de *Cattleya* Enid com *Blc*. Enid Moore e que foi registrada como *Blc*. Captain Pessôa, que vem a ser o próprio.

Se seu cultivo não está bom, nenhum rodeio:"-Sua cultura está uma porcaria!..."

A florada de que você tanto se orgulhava é julgada assim: "- Medíocre, isto não é digno de estar em sua coleção!" (notem que o efeito disso é importante, pois você fica desafiado a um dia mostrar algo que mereça um elogio e uma das minhas melhores gratificações orquidófilas foi o dia em que Álvaro me pediu cortes de plantas

minhas, que ele não possuia ainda e que estão sendo preparados, C. Portia e Lc. Sultan).

"- Quem cultiva orquídeas em apartamento está desgraçado..."

Tenho aprendido muito com ele, nestes anos todos, e não apenas com ele, mas, também, com seu fiel escudeiro Jorge Sampaio, um caseiro que devia ser meristemado para felicidade geral da orquidofilia brasileira...

Sinto que estou me alongando e não consegui pintar todas as facetas do seu perfil orquidófilo, que é o que interessa.

Em carta, publicada recentemente em Orquidário, dizia o grande orquidófilo de Taubaté, Oscar V. Sachs Jr., a propósito de homenagens nossas em PULCHRA, que homenagem em vida é mais gostoso. Não notou o nosso amigo que, nestes Perfis, não temos feito outra coisa, só vivos e pessoas importantes para o desenvolvimento orquidófilo brasileiro.

Tem Álvaro uma outra faceta, a de criador de belas flores. Prestem a atenção em alguns dos seus cruzamentos, sobretudo na linha de miniaturização da Aliança da Cattleya, de que são exemplos eminentes Lc. Alberto Lhamas (Lc. Tropic Dawn 'Fire Flame' x Lc. Suavior), ou a Blc. Ophelia Mesquita (Blc. Raising Sun'La Tuilérie' x C. intermedia aquinii), onde ele conseguiu um puro amarelo e aquinado.

Enfim, um conselho e sugestão: é preciso conhecer e conviver com Álvaro Orquidófilo Pessoa para descobrir, aos poucos, o volume e a densidade do seu trabalho e, porque não dizer, da sua amizade.

Raimundo Mesquita

SEMENTEIRA DOS SÓCIOS.

Cattleya walkeriana Gardner. 'Feiticeira' versus alba 'Equilab'.

De Uberaba telefonou-nos o sócio Mário de Arruda Mendes, colecionador que dispensa comentários, para nos contar um pouco da história de duas famosas *Cattleyas walkerianas*, a Feiticeira' e a alba 'Equilab'. Da primeira, nosdisse que a planta veio de José Dias de Castro, que cedeu uma muda a Orestes Loboda, tendo sido este quem deu um corte a Adhemar Manarini, autorizando a clonagem. Já a alba 'Equilab' resulta de um espécime trazido dos Estados Unidos por Noboru Suzuki, o saudoso colecionador de Dracena, SP, que presenteou Mário Arruda Mendes com um corte e este, por sua vez, deu, também, um corte a Orestes Loboda, que repassou a Manarini, para o me-ristema.

Porque tudo isto? Primeiro, porque Mário de Arruda Mendes é um dos maiores conhecedores e colecionadores da espécie (desses que reconhecem uma variedade de Cattleya walkeriana à distância e com um simples re-lance de olhos) e uma observação sua merece toda a atenção e acatamento. Segundo, porque a história de duas soberbas variedades é, sempre, assunto de interesse; terceiro, porque na pequena notícia encerra-se um belo exemplo de desprendimento e fraternidade orquidófila; e, quarto e por último, porque queria o nosso amigo Mário Arruda Mendes contribuir para a precisão das informações constantes de Orquidário. Refutou que a bela foto, de Valentim Tavares Fernandes, que está na capa do nosso último número seja, de fato,

da 'Feiticeira', afirmando que se trata da alba 'Equilab'. Permitimonos dissentir, uma vez que, no original da foto, temos uma flor de cor rosa, bem claro (o que, aliás, é visivel, na foto da capa, embora a reprodução não tenha sido absolutamente perfeita, pelo fato de a foto não ser um 'slide', mas um cromo). Fica o enigma: será que alba não é "plena" e apresenta variantes, tênues, de cor, ou a 'Feiticeira' produz espécimes muito claros, ou, ainda, será que se trata de uma outra variedade, igualmente bela? Esperamos palavra de Valentim Tavares Fernandes, autor da foto, e a opinião de outros especialistas.

<u>Francisco Freire Alemão Cysneiros</u> <u>Ionopsis utricularioides.</u>

"Nonº 1, deste ano, de Orquidário, pag. 25, foi publicada uma prancha extraida da obra de Francisco Freire Alemão Cysneiros (1797-1874)com a legenda lonopsis utricularioides. A planta ali representada é, no entanto, uma 'Rodriguezia obtusifolia'. Não sei se o título provém da obra original ou se foi acrescenta-do recentemente. Para tanto, não disponho donecessário conhecimento da língua portuguesa, que me permitiria interpretar o texto publicado. Seria recomendável esclarecer ecorrigir o erro. O caso é que já existe um desenho desta planta, sob o nome 'Epidendrum candichum', publicadona "Flora Fluminensis" do Frei José Mariano da Conceição Vellozo, em 1827."

Irene Bock, da Comissão Editorial da revista alemã "Die Orchidee".

Verificamos que o reparo é procedente e que a legenda errônea foi acrescentada recentemente.

Editoria

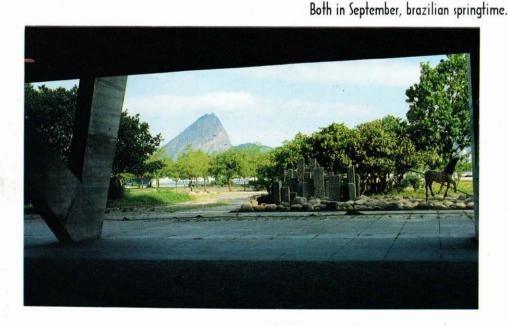
Um anticontaminante para seu meio de cultura.

Todos os semeadores, de quando em quando, procuram por descontaminantes do meio de cultura. Aí vai um, simples de preparar e de usar.

Adquirir, em farmácia, o produto "Quemicetina succinato". Ele vem acondicionado, em pó, num frasco e é acompanhado de uma ampola de água distilada. Dissolver o conteúdo do frasco do antibiótico com 5ml de água distilada (ampola). O resultado é uma solução concentrada de cloranfenicol . Retirar, com seringa, 0,5ml dessa solução (100mg/0,5ml) e adicionar em 10ml de água esterilizada. Misturar e incorporar 0,5 ml dessa nova solução a 100ml do meio de cultura habitualmente usado.

Concentração final: 5mg de cloranfenicol por 100ml de meio de cultura.

Esterilizar o meio de cultura como de hábito (panela de pressão ou autoclave).


As duas soluções que sobrarem podem ser guardadas em freezer ou em congelador de geladeira, para novo uso, por 30 dias.

Este é o Museu de Arte Moderna do Rio de Janeiro.

Aqui se realizam as Exposições anuais da OrquidaRIO. A deste ano será de 23 a 26 de setembro próximo. Aqui se realizarão, tembém, em 1994, a International Orchid Show, OrchiRIO 94, e, em 1996, a 15º Conferência e Exposição Mundial de Orquídeas. Ambas em setembro.

Above view of the Modern Art Museum - MAM, from Rio de Janeiro, Brazil. Below landscape of the point of view from the MAM. Here will run two Shows, In 1994, the OrchiR1O 94, and, in 1996, the 15th World Orchid Conference and Show, 15th WOC.

International Orchid Show

RIO 15 to 18 September 1994

OrchiRIO

Promoção: OrquidaRIO,

Orquidófilos Associados do Rio de Janeiro, S/C Informações/Informations:

Host, Turismo de Eventos Ltda.

Rua São Clemente nº 407 - Botafogo 22.260-001 - Rio de Janeiro, RJ - Brasil Tel. +55 21 286 3536/Fax +55 21 246 1314

