Questões de Cultivo

Esterilização de sementes de orquídeas para cultura assimbiótica

Francisco de Sales Carvalho e Silva1 Sergio Potsch de Carvalho e Silva 2

A germinação das sementes das orquídeas é muito dificil pois, como é sabido, seus embriões não levam reserva e necessitam de um fungo específico que lhes fomeça alimento. O papel dos fungos na germinação destas sementes foi bem estudado nos trabalhos de Burgeff na Alemanha e Bernard na França, nos idos de 1909. Daí surgiram os primeiros trabalhos práticos de cultura em meios previamente contaminados por fungos, da firma Charles Worth & Co. na Inglaterra, em colaboração com o Dr. J. Ramsbotton. Eram os chamados meios simbióticos de germinação de orquídeas.

Mais tarde, em 1922, o Dr. L.Knudson, nos laboratórios de Fisiologia Vegetal da Universidade de Cornell, demonstrava a não necessidade do fungo, desde que fosse fornecido ao embrião o açúcar de que necessitava para a germinação. O advento desta técnica

de cultura de sementes de orquídeas, conhecida como cultura assimbiótica, em tão boa hora imaginada por esse cientista, criou a necessidade de um método de esterilização, cuja substância esterilizante deveria preencher dois requisitos básicos e quase antagônicos: eliminar os microorganismos (fungos, bactérias e protozoários) e os ácaros além de suas formas de resistência sem causar danos aos embriões ou prejudicando-os o mínimo possível. Os agentes esterilizantes agindo por coagulação das proteínas, por oxidação das substâncias orgânicas ou por formação de complexos químicos, alteram as condições básicas da vida. Esses maleficios atingem a todos os seres vivos, quer sejam microorganismos, animais ou vegetais. O cloro, por exemplo, é tão tóxico para as bactérias como para um mamífero ou para uma planta.

Para atender a essa necessidade de esterilização, tem sido utilizada uma solução de cloro em água, segundo técnica proposta por Wilson. Por esse processo, adicionamse 10 gramas de hipoclorito de cálcio a 140 ml de água e agita-se bem por alguns minutos. Na presença da água, o sal se hidrolisa liberando cloro gasoso que se dissolve e o cálcio é precipitado em forma de hidróxido. Por filtração, em papel de filtro, obtem-se uma solução límpida, mais ou menos amarelada, com um percentual aproximado de 0,4% de cloro livre, que é o agente esterilizante. Essa solução tem pH alcalino (+/- 10,0) em razão da dissolução de pequena quantidade de hidróxido de cálcio. Esta alcalinidade favorece a molhagem das sementes, dispensando o uso de agentes molhantes. As sementes são mantidas nesta solução por aproximadamente 15 minutos, sendo transferidas para o meio de cultura, sem necessidade de lavagem posterior em água. Outros trabalhos falam do emprego de peridrol a 6% (água oxigenada a 20 vls); de solução de lugol (iodo-iodetado); de ácido fênico; de cloreto mercúrico; de mercuro cromo etc...

Mais recentemente generalizou-se, especialmente entre nós, o uso da solução de hipoclorito de sódio (clorox dos americanos, cândida em São Paulo ou nossa água sanitária). Provavelmente a facilidade do emprego - as soluções já vêem prontas - foi o fato determinante desta preferência. Normalmente os que a usam, empregam as de uso doméstico e, confiantes na dosagem indicada no rótulo diluem-na a 10% para obter a concentração de cloro desejada, mantendo as sementes em contato por tempo variável segundo o estado das cápsulas (abertas ou fechadas). Os resultados devem ser razoáveis pois a prática continua em vigor.

Há algum tempo, planejamos um trabalho comparativo sobre a eficácia de alguns meios de cultura, sob a luz dos modernos conhecimentos da ação de quinetinas e auxinas na germinação e na manutenção das culturas. Começamos a observar no curso do trabalho variações muito grandes e, de certo modo injustificáveis, no tocante à contaminação dos meios.

Em outra experiência semeamos, em um mesmo dia, dois lotes de sementes de Laelia purpurata, de uma mesma cápsula. Nos dois casos, as sementes foram mantidas por 15 minutos em água sanitária diluida a 10%. Obtivemos, no primeiro, um baixo índice de contaminação enquanto no segundo, de 10 frascos, 6 contaminaram. Como utilizamos água sanitária de garrafas diferentes para cada lote, concluímos que o elemento causador das variações deveria estar no processo de esterilização.

Dosamos as duas amostras de agua sanitaria. Encontramos na primeira 0,6 % de cloro livre e na segunda não chegava a 0,2%. Comparamos diversas amostras de água sanitária obtidas no comércio, de marcas diferentes mas que estampavam no rótulo a concentração de 5% de cloro livre. Encontramos a surpreendente variação de 0,2% a 1,5%, a maior concentração encontrada na época. Isto explicava, sem maiores dificuldades, o problema das contaminações, tornando impossível comparar o resultado do crescimento nos diversos meios, tendo uma variante tão grande. Assimsendo, como elemento básico para o nosso trabalho, resolvemos estabelecer uma técnica que nos desse o máximo de uniformidade na esterilização das sementes. O agente químico esterilizante, além de sua capacidade

germicida, que se expressa por coagulação das proteínas bacterianas (p.ex., fenol), ou por oxidação e inativação das enzimas microbianas (peridrol, hipoclorito, etc...) ou por inativação dos grupamentos HS, interferindo no metabolismo das bactérias (sais de mercúrio), deve também, terpodermolhante razoável que permita contato mais íntimo entre a solução e as sementes. No caso do hipoclorito de sódio, a leve alcalinidade do meio favorece essa ação. Já com a água oxigenada, residualmente menos tóxica, é necessário juntar um agente molhante que favoreça essa ação.

Sabendo-se que o poder esterilizante aumenta na razão direta da temperatura, - há exemplos que relatam que mais 10°C podem dobrar essa ação - para maior uniformidade, devemos trabalhar em temperaturas ambientes seme-lhantes.

É bom notar que esses cuidados aparentemente irrelevantes e até exagerados se tornam importantes na medida em que sabemos que a ação do agente químico é também muito perniciosa para os embriões, chegando, por vezes, ao ponto de inativá-los, daí evitar soluções muito concentradas ou tempo excessivo.

Esses cuidados são muito importantes nas culturas com finalidades comerciais, onde a perda de semeadura por contaminação ou não germinação pode representar prejuízos vultosos ou nos trabalhos científicos, pois os resultados podem ser mascarados.

Na bibliografia, temos referência de que, pela técnica de Wilson, sementes de espécies dos gêneros Laelia e Cattleya podem ser mantidas por três horas na solução de hipoclorito sem perda da capacidade de germinação. Evi-dentemente, tanto maior a ação do cloro, pior para a germinação.

Antes de iniciarmos a esterilização propriamente dita, colocamos uma quantidade de sementes num tubo de ensaio 10 x 1, juntamos água desmineralizada até 2/3 do tubo e fechamos com rolha de borracha. Agitamos fortemente o tubo para molhagem interna das sementes, o que leva aproximadamente 15 minutos. Essa lavagem tem a finalidade de separar as sementes fecundadas, mais densas, das estéreis, mais leves e que flutuam.

Se as sementes forem colocadas diretamente no meio esterilizante, cuja densidade é maior que a da água, pode haver a tendência de todas as sementes flutuarem, dificultando a separação. Sementes de alguns gêneros como Corianthes e Catasetum, por possuírem um envoltório embrionário muito grande e que retém muitas bolhas de ar, dificilmente afundam, sendo necessária uma análise num microscópio para avaliar o grau de fecundidade das sementes e, separação das férteis e estéreis.

Desprezamos as sementes que flutuam e decantamos a água que cobre as sementes férteis, no fundo do tubo.

Às vezes há a necessidade de se centrifugar levemente o tubo para maior sedimentação das sementes e melhor retirada da água. Juntamos ao tubo solução de hipoclorito de sódio, recentemente dosada, segundo a técnica descrita adiante, diluída em água para se obter uma solução de 0,4% de cloro livre. Agitamos fortemente, a intervalos regulares para perfeita molhagem das sementes, que ficam inicialmente amareladas por ação do cloro sobre a matéria orgânica. Conforme o grau provável de contaminação das sementes, deixamos em contato pelos seguintes tempos:

a-Sementes provenientes de cápsulas intactas, previamente lavadas com sabão e álcool a 70% antes de serem abertas, no laboratório : 10 minutos no máximo.

b-Sementes procedentes de cápsulas abertas naturalmente, há pouco tempo : 15 minutos, aproximadamente.

c- Sementes procedentes de cápsulas abertas há muitos dias : pelo menos 20 minutos.

Terminado o tempo desejado, coloca-se o tubo na centrífuga manual por uns dois minutos e decanta-se ao máximo possível a solução de hipoclorito. Deve-se ter o cuidado para não contaminar a rolha de borracha, nessa altura com a parte interna esterilizada pelo cloro. Faz-se a semeadura, sem prévia lavagem em água, por ser absolutamente dispensável.

É preferível manter as sementes mais tempo em soluções mais diluidas de hipoclorito do que um tempo menor em soluções mais concen-tradas. Uma solução mais diluida leva menos cloro e álcali para o meio de cultura. Além disso, o hipoclorito exerce uma ação emoliente sobre as sementes e, essa ação é mais acentuada nas soluções mais concentradas, danificando mais o embrião.

Outras soluções esterilizantes que podem ser usadas, são:

Bicloreto de mercúrio (sublimado corrosivo - Hg Cl₂) a 1/1.000

2 - Lugol (seg. Hana Gluber):

Iodo			30	g
Iodeto	de	potássio	60	g

Água 900 ml

(Para usar, diluir 6 ml em 1 litro de água. Deixar de 10 a 30 minutos).

3- Peridrol a 20 % (água oxigenada a 6 volumes) - 10 a 30 minutos.

4- Solução de hipoclorito de sódio com 10 % de cloro livre, usada no tratamento de piscinas. É a que usamos. Tomamos 5 ml dessa solução e diluímos a 100 ml de água.

Qualquer água sanitária pode ser usada, no entanto é aconselhável que seja controlada.

Realmente, para o amador que não dispõe de um laboratório, por simples que seja, e que não tenha conhecimentos básicos de química, o controle da solução de hipoclorito de sódio complica sensivelmente seu trabalho. Infe-lizmente, dada a inconstância da concentração de cloro livre nas soluções que achamos no mercado, fica difícil outra orientação. Muitas vezes o insucesso leva o amador ao desânimo, julgando-se incapaz de uma boa semeadura, com poucas contaminações, quando o erro está na solução de hipoclorito excessivamente baixa em cloro. Vamos tentar mostrar ao amador uma técnica simples e que não necessita de uma grande precisão.

CONTROLE DA SOLUÇÃO DE HIPOCLORITO

Quem dispuser de um laboratório e de noções práticas de química deve dosar o cloro livre na solução de hipoclorito de sódio pelo tiossulfato de sódio.

Quem não contar com esses recursos, pode lançar mão do pequeno estojo "GENKIT" da Genco Química industrial Ltda. usado no controle de pH e de nível de cloro de piscinas. É um teste calorimétrico, simples e pouco custoso. Para avaliar o teor de cloro livre, toma-se uma gota da solução de hipoclorito a ser usada, dilui-se a 100 ml com água de torneira. Mexe-se bem e toma-se uma gota desta solução e dilui-se novamente em 100 ml de água. Após essas duas diluições faz-se a avaliação enchendo-se a célula do teste, na faixa relativa ao cloro e adicionam-se 4 gotas de solução de Ortotoluidina. Agita-se bem. Se o hipoclorito estiver bom, a coloração da amostra deve ficar entre 1,5 e 2,0.

O boletim da Sociedade Americana de Orquídeas, no seu número de fevereiro de 1985, publicou um interessante método de esterilização de sementes de autoria de Richard Snow. Neste trabalho o autor recomenda a manutenção das sementes por 24 horas, com agitação intermitente, numa solução de açúcar comum, com a finalidade de molhar bem as

sementes, tornando mais efetivo o tratamento com o esterilizante. Em seguida, a solução de açúcar é decantada, e as sementes são mer-gulhadas por 30 minutos, com agitação intermitente, numa solução de peridrol a 3 % (a água oxigenada 10 vol. do comércio). Segundo o autor, que também preconiza um método químico de esterilização dos meios de cultura e vidraria, essa concentração de Peridrol é muito bem tolerada pelas sementes e protocórmios. Além do poder esterilizante para os microrganismos, o peridrol não tem a desvantagem da alcalinidade, ao se decompor produz água e, suas soluções, quando de boa qualidade, são muito estáveis não neces-sitando feitura recente ou controle de con-centrações, além de ser de preço muito acessível.

Esse processo nos pareceu muito interessante, sendo prático e lógico. Assim sendo, fizemos diversas semeaduras, com bons resultados, por essa técnica de esterilização, com uma única alteração - passamos a deixar as sementes 1 hora no Peridrol a 3%, pois 30 minutos se mostraram insuficientes para eliminar certos fungos.

Já dispomos de diversas culturas germinadas por esse processo. Falta-nos somentemais tempo para melhor ajuizar os resultados.

Para completar o presente artigo, estamos realizando um trabalho visando determinar o tempo ideal para esterilização das sementes, com conservação do poder germinativo das mesmas, nas soluções de hipoclorito de sódio.

Bibliografia

>ARDITTI.Joseph Orchid Biology - I e II Comstock - Cornell University press. 1977 e 1982. >BURGEFF, F.D. Hans Saprophytismus und Symbiose Studien an tropichen Orchideen Fischer in Jeans, 193 >KNUDSON Lewis Nonsymbiotic Germination of Orchid Seeds Bot.Gazette - 73 - n°1 jan. 1922: 77 - n°2; apr. 1924: 79 - nº1 ian, 1925 >SNOW, Richard -Improvements in Methods for germination of Orchids Seeds - Am. Orchid Soc. Bulletin, vol. 54 nº 2 pag.178 (fev.) >WHITE, Edward A. American Orchid Culture

A.T.de La Mare Corp. Inc. - N.Y. 1948

>WHITE, W.H.
The Book of Orchids - London 1902.
>WILSON, Jans K. - A 1915 Amer. Journal Bot. 2 - 420/424
Calcium hypochlorite as a seed sterilizer

1 - R.Elvira Niemeyer 214, São Conrado, Rio de Janeiro, RJ. CEP 22600

2 - Instituto de Biologia, Universidade Federal do Rio de Janeiro. Cid Universitaria, Ilha do Fundão, CCS, BL A. CEP 21941.